PoE Lab 03 : Line-Following Robot

Yoonyoung Cho, Eric Miller
October 13 2016

1 Introduction

o

S
i

|

Figure 1: Our Line Follower architecture, a two-wheeled differential drive robot equipped with two IR
reflectance sensors positioned at the front.

In implementing the line-follower robot, we adopted three different, yet complementary schemes for control
algorithms: Bang-Bang, PID, and Memory-Based control. In parallel to development of these methods, we
also developed a simulator that would visualize a virtual hardware interface with native arduino code as a
test bench for later phases in development and debugging.

2 Hardware

Figure 2: Final assembly of our robot.

In order to optimize for the reaction time from when the sensor detects a change in the environment, we
reversed the orientation of the chassis so that what would otherwise be front would be the back side: i.e. we
turned the Tadpole architecture to Delta.

[~

Figure 3: Mount for the IR reflectance sensor.

We have noticed that the sensor calibration was highly sensitive to the height at which the sensor was
mounted; i.e.

r = htan(fov/2)

where h is the height of the IR sensor, fov is its generic field of view, and r is the radius of the conical
section model from which the sensor will poll the values. In addition to this, the signal strength would
depend heavily on h as well, as some of the reflected light gets dissipated to the atmosphere, etc. To this
end, we designed a minimalistic adjustable-height mount that operates with nuts and bolts, which made it
not only convenient to disassemble, but also possible to rapidly adjust the calibration parameters as needed.

3 Control
3.1 BangBang

Figure 4: Simplified diagram that illustrates behavior of the Bang-Bang controller.

As an initial testing step, we employed the classical control algorithm for the Line-Follower Robot: BangBanyg.
With Bang-Bang control, the robot is, at any given moment, under either of the two states: turning
left or turning right. Because the robot cannot incorporate past trajectory into its decision-making process,

its decisions are momentary and quite extreme, and the robot is always turning. Whereas this is certainly
not optimal, the robot will follow the line in an oscillatory trajectory as the line would always be contained
within the perimeters of the two sensors.

3.2 PID Control

Motor Control based on IR Sensor Reading

— right IR
600 — turn factor |

700

500 |

400 |-

300

200

100

-100

0 100 200 300 400 500 600

Figure 5: Sensor vs. Motor output graph (run in simulator)

Unlike Bang-Bang control, where there are only two possible states in which the car could be in, the PID
control can evaluate the error function in continuous space, which tends to result in a lot smoother trajectory.

Our PID controller governed the turning factor of the robot: fixing the forward velocity of the robot
essentially constrains the problem such that the control target and the error term collapses into a one-
dimensional PID loop for determining sideways motion, i.e.

ir —300
800 — 300
€t = €;t—1 + 6ptdt

=(1+1

-

ept — €pt—1
dt

et = kpept + kiejr + kgege

D1 = Pfw T €tDin

DPr = DPfw — €tPtn

eqt =

Where e, p, I, r, fw, tn, and t represents error, power, left, right, forward-factor, turn-factor, and time,
respectively. 300 and 800 are the empirical response readingsﬂ we have obtained from the Infrared sensor,
distinguishing the tape and floor parts.

With untuned PID control trial to roughly verify that the code was working as intended, we obtained a
time of 1:13 around the track. It should be noted that during the memorization phase of our final control
algorithm, the PID controller (despite frequent stops in order to record the sectional path information)
completed the track in less than a minute.

1yoltage readings that map the ranges 0-255 to 0-5V.

3.3 Memory Prediction

The robot follows the path extremely well

—— Robot Angle
—— Path Angle
Path errar

-60

Angle (degrees)

-180
0 25 50 75 100

Distance (cm)

Figure 6: A snapshot of the pose of the robot along a segment in the path during one of the runs; the path
is straight in the beginning (nearly constant angle) until a major 180 degree turn from 30cm until 90cm.

While PID is an incredibly powerful tool, its benefits primarily shine in situations where the behavior of the
system varies unpredictably with time. At first glance, a line follower seems like a prime example of this
because the shape of the upcoming line is unknown, but in reality, the nature of the course as a closed loop
that is permanently affixed to the floor means that the path of the line is actually predictable, and that
predictability can be harnessed to enhance the performance of the robot significantly. This insight gave rise
to our third-generation algorithm, the memory-prediction follower, which circumnavigates the course twice,
using the first run to collect readings on the precise curvature of the course and the second run to use those
readings for improving the speed of the navigation.

Intuitively, this task would be easy if the behavior of the motors was perfectly repeatable from run to
run because it would be possible to simply record the outputs on the first run and replay them faster for
the second run. In reality, the low-quality DC motors we were provided are not anywhere near perfectly
repeatable, as demonstrated in Figure and exhibit variations of up to 10% from predictable behavior. We
likely could have decreased that error substantially by incorporating true encoders onto the robot, but we
wanted to stay within the letter of the lab description by using only the two IR sensors as input devices.

Sensor readings are factored into steering decisions

Sensor
A error
{ } Sensar

correction

» ’- ‘ ﬂ Turn factor

| | Ih M\/\Mm

Distance (cm)

Correction coefficient

-
[
n
en
-1
cn

=l

-

Figure 7: Sensor data is factored into the final steering corrections (shown in orange) but most of the input
comes from error relative to the memorized path.

Because the encoder data we are generating from the motor commands is highly inaccurate, we needed to
fuse it with traditional line sensor readings for it to be useful. We did this in two ways. One line sensor (after
calibration scaling) was used as a source of a PID loop to update the robot’s estimated orientation in a way
akin to following the line. We made the rates on this loop substantially lower than they would be for a pure
sensor-based following solution because we could take advantage of the map data collected on the previous
run. We placed the other sensor several inches away, much farther than a normal two-sensor follower, and
used it exclusively to detect abrupt changes in curvature direction. These changes were used to reset the
”distance travelled” component of the robot’s position estimate. Every time the curvature changed, these
two sensors switch roles, guaranteeing that the ”following” sensor will always be on the interior (concave)
portion of the curving line.

By running this procedure without prior map data (and at low speed) we were able to built a map
composed of seven segments that together build up the course. We stored these segments as lists of floating
point values representing the estimated angle of the line at each point in relation to the angle at the start
of that segment, with one value stored per centimeter of course. By using separate segments, we allowed
ourselves to allocate appropriate amounts of memory and store configuration values associated with each
piece of the course. Storing absolute angles instead of rates of curvature was intended to allow efficient
computation of drive instructions from any point to any other, although either decision would likely have
fallen within our performance requirements.

4 Calibration

4.1 Motor Characterization

DC Motor Speed Calibration Without Load

400 :
— Raw Data
3501 — Linear Fit
300
250
Z 200
o
150
100
50 |
0 L
0 1 2 3 4 5 6 7 8 9

Voltage

Figure 8: Calibration Curve

In order to obtain better data with dead-reckoning, it was essential to have a reasonably precise estimate of
the correlation between the power input to the motors and the output velocity. In order to characterize the
motors, Below are the thus obtained relations:

r = 3.25cm
w = 2m(46.55p — 1.80)rd/mn
T = wr

This data was obtained by attaching the tape on the shaft of the motors and counting the number of
times that a tape would pass through a certain point in space within a defined amount of time; in practice,
this was done by simply placing a finger in the trajectory of the tape and counting the number of collisions

over a minute.

4.2 IR Reflectance Sensor Calibration

10KQ

Vce
216 ©

5

Figure 9: Final schematics for interfacing with the IR Reflectance Sensor

The calibration process for the IR reflectance sensor was more of a guess-and-check binary search for the
right resistor value that can distinguish between the reflectance responses from the floor and the tape. In
order to smooth out the possible noise, we polled the readings for a set duration of the during the loop and
updated the values at 10 milliseconds, which was significant enough to cancel the noise but small enough to

facilitate rapid reaction.

5 Simulation

File

Sim. Accel 1.00

F

Reset Robot Location

Reset Route| 16 |5

pow_| pow_r

Reset Power

IR_left|1

IR_right |1 "
IR Height

v | Automatic

Figure 10: Snapshot of the simulation during one of its autonomous runs

Initially, we developed the simulation as test bench for the software code before the chassis arrived for
hardware integration testing. However, the process was delayed such that it was completed around the same
time as the robot. At this point, we sought to use the simulator to fine-tune the &, k;, and kq parameters, as
well as the offset and the position of the IR sensors, but it quickly turned out that adjusting those parameters
didn’t take much effort.

What we ultimately ended up doing is to use the simulator as a relatively idealized environment, in
parallel to the physical interaction of the robot with the actual course, where the inherent environmental
noise and hardware limitations do not affect the logics of the code. Whereas we did not have time to actually
utilize its powers as an optimization platform, it would be a reasonable next step to do so.

5.1 Kinematics

In the differential drive robot, the velocities of the two motor are responsible for dictating the motion of the
robot; i.e. the two signals can be mixed to form the next-state estimate as follows:

The instantaneous center of curvature, denoted ICC, is the imaginary center of rotation along which the
robot will rotate. it is found byP}

ICC = (x — Rsind,y + Rconsb)
thus, at t =t + dt,

a’ cos(wdt) —sin(wdt) 0| [z —ICC, ICC,
y'| = |sin(wdot) cos(wdt) 0| |y—ICC,| + [ICC,
o’ 0 0 1 6 wot

6 Results & Reflection

Our robot, on its memorized run, was able to go through the course in under 30 seconds. |[Demo Video|

When we were electing to broaden the scope of this project such that the robot would take advantage of
accumulated knowledge of the course from history, we knew we were taking on a task that was potentially
impossible, and certainly very hard. Although we probably over-scoped the problem some, particularly by
refusing to use encoders, we are proud we managed to make it work at all, let alone with the speed we
eventually demonstrated.

Our robot’s coding strategy is more prone to external disturbances as a result of high reliance on odometry,
but it has the potential of a far higher maximum speed: its anticipation of future positions and low relianceﬂ
on IR sensor readings on its memorized run removes the dependency on the rate of the control loop, and
could potentially allow it to perform at or near the limit of motor speed. With a few more sensors, we
believe a map-based approach like ours would demonstrate clear superiority, and with one sensor, PID-like
(stateless) approaches are probably best, but with the middle-ground of two line sensors, it isn’t clear which
approach is superior.

2Refer to [this document] for more detailed derivation.
3around 10%

https://www.youtube.com/watch?v=YWfVlXhnvgI
https://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf

7 Appendix: Code

7.1 Memory-Prediction Implementation

Main code (.ino)

e

% Version 2 Arduino code for Lab 3 of POE Fall 2016 as taught at Olin College

x This code attempts to follow the line while recording (and eventually being able to play
back) a motion path.

N

| *
% Authors: Eric Miller (eric@legoaces.org) and Jamie Cho (yoonyoung.cho@students.olin.edu)

6| */

s|#include <stdlib .h>

o

10| // Imports for Motor Shield, taken from https://learn.adafruit.com/adafruit—motor—shield —v2—
for—arduino/using—dc—motors

11|#include <Wire.h>

i2|#include <Adafruit_-MotorShield .h>

13|#include " utility /Adafruit-MS_PWDMServoDriver.h”

15| // Import of PID library for training run, see libraries.md for download instructions

16|#include <PID_v1l.h>

18| // Setup state machine for robot
19| byte state = 1;

20| const byte STATESTOP = 0;

21| const byte STATEMEMORIZE = 1;
const byte STATEREPLAY = 2;

// Include path management code
#include ”odometry.h”
6|#include " paths.h”

28| // Controlling constants

30| const int LOOPDURATION = 10; //(ms) This is the inverse of the main loop frequency

32| const int FORWARD_POWERINITIAL = 30; // 0...255
33| const int TURN_POWERINITIAL = 30; // 0...255

35| const float OUTER-TURN_LIMIT = 0.05;
37| const int POWERREPLAY = 40; // 0...255

30| const double PATHSTEERINGRATE = .20; // Measured in fraction / degree, path—based replay
steering constant.

41| const byte SMOOTHINGLENGTH = 4;

43| const double LINELANGLE_ADJUSTMENT RATEAWAY = 300.0/1000; // Measured in degrees per ms,
maximum line —based odometry adjustment factor right.

44| const double LINE_ANGLE_ADJUSTMENT RATETOWARD = 150.0/1000; // Measured in degrees per ms,
maximum line —based odometry adjustment factor right.

45

16| const int MIN_SENSOR_LEFT = 360;
47| const int MAX_SENSOR_LEFT = 780;
18| const int MIN_SENSOR_RIGHT = 600;
19| const int MAXSENSORRIGHT = 880;

51| // Pin setup (must match hardware)
52|/ const byte leftSensorPin = AO;
53| const byte rightSensorPin = Al;

55| Adafruit-MotorShield AFMS = Adafruit-MotorShield () ;
56| Adafruit_-DCMotor *leftMotor = AFMS. getMotor(1);
57| Adafruit-DCMotor srightMotor = AFMS. getMotor (2) ;

50| // Global variable setup (things that change each loop)
60| long lastActionTime;

63| int leftPower = 0, rightPower = 0; // range —255...255

65| // Declare and allocate robot pose and paths
66
67| Pose robotPose;
68
so| Path pathl (200, false);
70| Path path2(100, true);
Path path3 (600, false);
Path path4 (150, true);
Path path5 (200, false);
Path path6 (100, true);
Path path7 (100, false);

~
N

Path spaths[] = {&pathl, &path2, &path3, &path4, &path5, &path6, &pathT7};
const byte numPaths = 7;
byte currentPathId = 0;

SIS BEES EES TS S R B B |
S © ® = 0

o0

Path *currentPath = paths[currentPathld];

00
S

3| // Setup PID controller
double PIDerror=0, PIDsetpoint=0, PIDoutput;
double kp=1,ki=0,kd=0;

o o
a b W

0
=

7| PID pid(&PIDerror, &PIDoutput, &PIDsetpoint, kp, ki, kd, DIRECT);

0

o
o3

void setup ()

90| {
01| AFMS. begin () ;

92

93 // Wait one second before running to allow the user to get their hand
94 // out of the robot.
95 stop () ;

96 delay (1000) ;
o7
08 // Note the high baud rate to allow Serial.print() statements to run non—blocking within
10ms

99 Serial.begin (57600) ;

100

101 lastActionTime = millis () ;
102
103 // Initialize PID controller parameters

104 pid . SetMode (AUTOMATIC) ;
105 pid . SetSampleTime (LOOPDURATION — 2);
106 pid.SetOutputLimits(—1, 1);

107

108 // Reset robot pose for beginning of training run
109 robotPose.reset () ;

110 }

111

112| // Tracking variables for IR averaging to allow maximally smooth data collection

13| // As many readings as possible over <10ms are averaged before any other processing is done
14| long totalLeft = 0;

15| long totalRight = 0;

116) int count = 0;

117
18] // Used to moderate debugging printouts with modulo.
19| int loopCount = 0;

120
121 void loop ()
122
123 // Check for newly—set PID parameters on serial
124 handleIncomingSerial () ;

125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142

143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181

182

183

185
186
187
188
189

190

//

Update tracking variables of IR sensor

int leftRead = 0;
int rightRead = 0;
getMeasurements(&leftRead , &rightRead);

totalLeft += leftRead;
totalRight 4= rightRead;
count—+4-+;

//

Every (configurable) milliseconds , average together the readings recieved and handle
them

int dt = millis () — lastActionTime;

if

(dt > LOOPDURATION) {
float leftAvg = float(totalLeft) / count;
float rightAvg = float (totalRight) / count;

// Update the estimated position of the robot based on currently commanded powers
// In the future, this could be stateful and involve other sensors.
robotPose.odometryUpdate (leftPower , rightPower, dt);

// Main state machine

if (state = STATEMEMORIZE) {
//Serial.println (lineOffset (leftAvg, rightAvg));
memorizeLine (leftAvg, rightAvg);

if (state = STATEREPLAY){
// The memorizeLine function decided to change to STATEREPLAY
// Transition from STATEMEMORIZE to STATEREPLAY

Serial.println (” finished course, replaying.”);
stop () ;

for (int 1=0; i<numPaths; i++){
paths [i]—>smooth (SMOOTHINGLENGTH) ;

Serial . println(i);
paths[i]—>writeOut () ;

// This is blocking code, but the Serial printing above is inherently blocking,

// so there is nothing we can do to prevent it. This adds an aesthetically nice
pause ,

// and makes any bugs caused by blocking behavior more obvious so they can be fixed.

delay (3000) ;

// Reset to the first path
currentPathld = 0;
currentPath = paths [0];

// Reset the estimated robot position
robotPose.reset ();

}

}else if(state = STATEREPLAY){
replayLine (leftAvg , rightAvg, dt);
if (loopCount % 50 =— 0){

writePoseSerial () ;

}

}Yelse{
stop () ;
}

10

191
192
193
194

195

197

}

// Functions above write requested powers to global variables,
// driveMotors () reads, processes, and outputs those.
driveMotors () ;

// Check to see wheter the loop is running as fast as desired, and throw warnings if it
isn’t.
// This code intentionally refuses to run every 10th loop to prevent feeding badly where
// printing the warning causes excessive loop time in a self—perpetuating loop.
if (dt > LOOPDURATION x 2 && loopCount % 10){
Serial.print ("WARNING: Main loop running too slow: 7);
Serial.println (dt);

}

// Reset sensor tracking variables
totalRight = totalLeft = 0;

count = 0;

loopCount—++;

// This formulation attempts to ensure average loop duration is LOOPDURATION,
// without causing hyperactive behavior if the code is running slower than expected.

// In particular, this won’t drift at all unless a loop takes more than 10ms,
// and won’t ever run multiple loops in a row with less than 10ms spacing.
lastActionTime = lastActionTime + LOOPDURATION«int (dt / LOOPDURATION) ;

// If something messed up such that this loop took ridiculously long, prevent
// massive values of dt next time through the loop.
// This happens during state transitions sometimes, especially if lots of serial data is
being printed
if (millis() — lastActionTime > 500) {
lastActionTime = millis ();
}

}

// Using a basic clipped PID controller , memorizes the shape of the course.
void memorizeLine (float leftAvg, float rightAvg)

{

// Whether the current path curves right or left (preconfigured)
bool useLeftSensor = currentPath—>useLeftSensor;

// Step 1: compute the error from a simple PID line follower
float error = lineOffset (leftAvg , rightAvg, useLeftSensor);
PIDerror = error;

pid . Compute () ;

// whether the robot will turn right or left (positive is right)
float turnFactor = PIDoutput;

if (!useLeftSensor)
turnFactor x= —1;
}

// Step 2: constrain that error to make sure the robot doesn’t turn (much) toward the line
if (useLeftSensor){
turnFactor = min(turnFactor , OUTER.TURN_LIMIT) ;

} else {
turnFactor = max(turnFactor, —OUTER.TURN_LIMIT) ;
}

leftPower = FORWARD _POWERINITIAL + turnFactor *x TURN_POWER_INITIAL;
rightPower = FORWARDPOWERINITIAL — turnFactor x TURN_POWER_INITIAL;

// Step 3: Record the current motion into the path.

11

257 currentPath—>attemptUpdate(&robotPose);

260 // Step 4: determine whether the robot has ended the current segment

262 float offReading = lineOffset (leftAvg, rightAvg, !useLeftSensor);

264 // Note guards to prevent segments from finishing immediately (less then 5cm)

265 // or outlasting their allocated memory.

266 if ((offReading > 0.5 && robotPose.distAlong > 5) || robotPose.distAlong > currentPath—>
allocatedPoints){

267 // The robot’s off—line sensor has seen a line

268 Serial . println (”segment end detected”);

269

270

271 stop () ;

272 // delay (500) ;

273 robotPose.reset () ;

274

275 if (currentPathld < numPaths — 1){

276 currentPathId++;

277 currentPath = paths[currentPathld];

278 }else{

279 // trigger state transition

280 state = STATE REPLAY;

281 }

282

283 }

84

2 // Print debug information
286 if (loopCount % 50 =— 0){
287 writePoseSerial () ;

288 }

289 }

201 // Sets motor values for replaying a recorded path with input from sensor readings leftAvg
and rightAvg
202 void replayLine (float leftAvg, float rightAvg, int dt) {

293

294 // Step 0: Handle exception for control parameters on the 5th segment (id=4)

295 double awayAdjustAmount = LINE ANGLE_ADJUSTMENT RATE AWAY;

296 if (currentPathld = 4){

297 awayAdjustAmount = 1.8;

298 }

299

300 bool useLeftSensor = currentPath—>useLeftSensor;

301

302 // Step 1: adjust current odometry estimate on the basis of sensor readings.

303 // Note that this is clipped such that it will adjust dramatically to avoid

304 // a line and gradually to find it again.

305 // This prevents errors caused by the asymmetry of one—sensor following.

306

307 double lineError = lineOffset (leftAvg, rightAvg, useLeftSensor);

308

309 double lineCorrection = max(awayAdjustAmount, LINE ANGLE ADJUSTMENT RATE TOWARD)

310 * dt * lineError;

311

312 lineCorrection = constrain (lineCorrection , —LINE ANGLE ADJUSTMENT RATE TOWARD,
awayAdjustAmount) ;

313

314 robotPose.angleFrom += lineCorrection;

315
316
317 // Step 2: Drive the robot to follow the recorded path
318
319 PathPoint xtarget = currentPath—>getPoint (robotPose.distAlong);
320

321 // error is positive if the path is left of the robot

12

double pathError = target—>wrappedAngle — robotPose.angleFrom;

// whether the robot will turn right or left (positive is right)
double turnFactor = —pathError * PATHSTEERINGRATE;

leftPower = POWERREPLAY * (1 + turnFactor);
rightPower = POWERREPLAY % (1 — turnFactor);

// Step 3: Determine whether this segment of path is finished

float offReading = lineOffset (leftAvg, rightAvg, !useLeftSensor);

if (offReading > 0.5 && robotPose.distAlong > currentPath—>usedPoints*0.7){

// The robot’s off—line sensor has seen a line
Serial.println (”segment end detected”);

stop () ;
// delay (200);

robotPose.reset () ;

if (currentPathld < numPaths — 1){
currentPathld++;
currentPath = paths[currentPathld];

telse{
state = STATESTOP;
}

}

// Print debug information

if (loopCount % 50 = 0){
Serial.print (”pathError = 7);
Serial.print (pathError);
Serial.print (7\t:\t”);
Serial.println (turnFactor);

)| // mormalizePowers ensures that

// abs(xleft) < limit and abs(xright) < limit

// while maintaining their ratio.

// Useful for constraining desired speeds to be

// achievable by the motors.

void normalizePowers(int xleft , int *right, int limit){
int maxabs = max(abs(xleft), abs(xright));
if (maxabs > limit)

xleft = (xleft x limit) / maxabs;
xright = (*right * limit) / maxabs;
}
}

// Returns how much the selected sensor is on the line, with

// —1 reflecting ”completely off” and 1 meaning ”completely on”

// Note that the output is not strictly gaurunteed to be in this range.
float lineOffset (float leftAvg, float rightAvg, bool useLeftSensor)

if (useLeftSensor){

return map(leftAvg , MIN.SENSORLEFT, MAXSENSORLEFT, —100, 100) / 100.0;

} else {

return map(rightAvg, MIN_SENSORRIGHT, MAXSENSORRIGHT, —100, 100) / 100.0;

}
}

// If there is any data in the serial buffer, attempts to read in that data
D values.
void handleIncomingSerial ()

{

13

as new P, I

)

and

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
131
432
433
434
435
436
437

438

439
440
441

442
443
444
445
446
447
448
449
450
451
452
453
454

455

if (Serial.available() > 0){

Serial .setTimeout (100);

// Read first number from serial stream
kp = Serial.parseFloat () ;

Serial .read () ;

// Read second number from serial stream
ki = Serial.parseFloat () ;

Serial .read () ;

// Read third number form serial stream
kd = Serial.parseFloat () ;

Serial .read () ;

// Ingest remainder of serial buffer in case something went wrong
while (Serial.available ()){

Serial.read () ;
}

pid.SetTunings (kp, ki, kd);
writeTuningsSerial ();
}
}

void writePoseSerial () {
Serial.print (?Pose is: \t”);
robotPose. writeOut () ;
Serial.println () ;

}

void writeTuningsSerial ()
{
Serial.println (” Tunings set to (kp, ki, kd) = ");
Serial.print ("\t(”);
Serial.print (kp);
Serial.print(”, 7);
Serial.print (ki) ;
Serial.print(”, 7);
Serial.print (kd);
Serial.print(”)\n”);

}

void stop (){
leftPower = 0;
rightPower = 0;
driveMotors () ;

}

void driveMotors () {
// Inputs leftPower and rightPower vary from —255...255
// Code in this function is based on https://learn.adafruit.com/adafruit—motor—shield —v2—
for—arduino /using—dc—motors

normalizePowers(&leftPower , &rightPower, 255);

// For each motor, decide whether to run it FORWARD, BACKWARD, (or RELEASE)

// These are ternary operators, returning FORWARD if power > 0 and backward otherwise.
byte leftDirection = (leftPower > 0) ? FORWARD : BACKWARD;

byte rightDirection = (rightPower > 0) ? FORWARD : BACKWARD;

// Set motor speeds
leftMotor —> setSpeed(abs(leftPower));
rightMotor —> setSpeed (abs(rightPower));

// Set motor directions

leftMotor —> run(leftDirection);
rightMotor —> run(rightDirection);

14

156
157 void getMeasurements(int xleftRead, int xrightRead)
458
159 xleftRead = analogRead(leftSensorPin);

460 xrightRead = analogRead (rightSensorPin);

161 }

Path library (.h)

// PathPoint represents the data associated with each point

// along a recorded segment of path.

Currently this is just an angle because the speed adjustment flags
// needed to be removed before they could be fully implemented.

class PathPoint

6 {
7| public:

8 double wrappedAngle;

S
~
~

10 PathPoint () ;
b

PathPoint :: PathPoint (void){
wrappedAngle = 0;

I S

7| // A Path is a collection of PathPoints that represents a segment of the course.
¢| class Path

9] {

o| public:

21 Path(int length, bool useLeft);
23 PathPoint *xpoints;

24 int allocatedPoints; // = 0;

25 int usedPoints; // = 0;

26

27 bool useLeftSensor; // = false;
28

29 void writeOut(void);

30 bool attemptUpdate(Pose *pose);
31 void smooth(byte smoothingLength);
32 PathPoint *getPoint(double distAlong);

33| };

35| // Note that the points array is dynamically allocated to save space.
36| Path:: Path(int length, bool useLeft){
37 useLeftSensor = uselLeft;

39 allocatedPoints = length;
41 points = (PathPoint*) malloc(sizeof (PathPoint) * length);

43 for (int i = 0; i < allocatedPoints; 4+i)
14 {

15 points[i] = PathPoint();

16 }

48 points [0]. wrappedAngle = 0;

51| PathPoint xPath:: getPoint (double distAlong){
2 int index = min(distAlong, usedPoints — 1);
3 if (index < 0)

|t

5 return NULL;

56 }

57 return &points[index];

55| }

15

6C

62

oA W N

® 0 W 0 W N N N N N NN NN
AW N R~ O © W U 2

85

90

RS B R R

// Updates the path with new information if the information is not currently contained

the path.
bool Path::attemptUpdate(Pose xpose) {
if (int(pose—>distAlong) > usedPoints && usedPoints < allocatedPoints){
usedPoints++;
points [usedPoints |. wrappedAngle = pose—>angleFrom;
return true;

} else {

return false;

}

// Prints Path data to serial for debugging and analysis.
void Path:: writeOut () {
Serial.println (”id\tspeed\tisOffLine\tangle”);
for (int 1 = 0; i < usedPoints; ++i)
{
Serial . print(i);
Serial.print (”\t”);
Serial.print (points[i].wrappedAngle);
Serial.println ();
}
}

// Runs a n—point leading average to enable both forward—looking controls
// and to smooth out irregular behavior in the training follow.
void Path::smooth(byte smoothingLength){
for (int i = 0; i < usedPoints — smoothingLength; ++i)
{
double total = 0;
for (int j = 0; j < smoothingLength; ++j)

double point = points[i+j].wrappedAngle;
total 4= point;
}

double average = total / smoothingLength;

points[i].wrappedAngle = average;

predictions

Odometry code (.h)

#include <Arduino.h>

// This file attempts to estimate the ego—motion of the robot
// using the commanded powers of the motors. Expect accuracy of 4= 15%

class Pose
{
public:

Pose () ;

void odometryUpdate(int leftPower, int rightPower, int timestep);

void writeOut(void);

void reset ();

// Measured in cm, with positive being forward of the starting position

double distAlong;

// Measured in degrees, with positive being nose left.

double angleFrom;

s

Pose:: Pose() {
reset ();

void Pose::writeOut(void) {
Serial.print (7 (d, theta) = (7);

16

63
64

65

e

Serial.print (distAlong);
Serial.print (7, 7);
Serial.print (angleFrom);
Serial.print(7)”);

}

void Pose::reset (){
distAlong = 0;
angleFrom = 0;

}

i| // Neither of these constants matter much as long as they do not

// change between recording and playback.

// MAXFORWARDSPEED is scaled to approximately 1 = lcm on our robot,
// while MAX.TURNSPEED is approximately 1 = 1/10 degree.

const double MAXFORWARDSPEED = 100;

const double MAX TURNSPEED = 1000;

3| double adjustPower(int power){

double powerfrac = power / 255.0;
return powerfrac — .05 * powerfrac * powerfrac;

// Update the estimated pose of the robot based on wheel (estimated) odometry.
// Currently uses an almost linear approximation, with slight falloff at high powers.
// timestep is in ms
void Pose::odometryUpdate(int leftPower, int rightPower, int timestep) {
if (timestep > 100)

// Prevent large timesteps from causing jumps in odometry readings (for example, on
first boot)
return;

}

double leftPowerFrac = adjustPower(leftPower);

double rightPowerFrac = adjustPower(rightPower);

double forwardSpeed = (leftPowerFrac + rightPowerFrac) / 2 x MAXFORWARD_SPEED;
double turnSpeed = (rightPowerFrac — leftPowerFrac) / 2 % MAXTURNSPEED;

distAlong += forwardSpeed * timestep / 1000.0;
angleFrom += turnSpeed * timestep / 1000.0;

7.2 Simulator Implementation

The simulator is a relatively large project with a lot of split definitions, so including all of them here would
be impractical. Below are several more relevant parts that are directly related to either the computations or
the functions of the simulator. For the full documentation, please visit the github link.

7.2.1 Arduino Interface
Adafruit_MotorShield.h (declaration)

#ifndef ADAFRUIT MOTORSHIELD _H
#define ADAFRUIT_MOTORSHIELD_H

// This class emulates the behavior of the Adafruit Motor Shield V2 for the Arduino.

s|#include 7 utils .h”

#include ”arduino.h”
#include "robot.h”

#define FORWARD 1

#define BACKWARD 2

17

https://github.com/HALtheWise/POE-lab3/tree/simulator-memory

class Adafruit_-DCMotor{

oA W

1

1

15| private:

16 int pin;

17 int speed;

13| public:

19 Adafruit_DCMotor (int pin);

20 void setSpeed(int);

21 void run(byte&);

22| };

23

24| class Adafruit_MotorShield

25| {

26| private:

27 Adafruit_-DCMotor *xmotor_left , *xmotor_right;
28| public:

29 Adafruit_-MotorShield () ;

30 “Adafruit_MotorShield () ;

31 void begin();

32 Adafruit-DCMotorx getMotor(int);

}s

35| #endif // ADAFRUIT MOTORSHIELD H

Adafruit_MotorShield.cpp (definition)

#include ” Adafruit_-MotorShield .h”

N

// function definitions for the emulation of the Adafruit Motor Shield V2
// just to have it interface with the ”virtual arduino”

Adafruit_-DCMotor :: Adafruit_-DCMotor (int pin):pin(pin){

op!

9

10| void Adafruit-DCMotor :: run(byte & direction){
11 float dir;

12 if (direction = FORWARD) {

13 dir = 1;

14 }else if (direction = BACKWARD){

15 dir = —1;

16 }

17

18 if (robot){

19 switch (pin){

20 case 1: //left

21 robot—>setPowerL (dir * speed);
22 break;

23 case 2:

24 robot—>setPowerR (dir * speed);
25 break;

26 }

27 }

28

29 }

30

31| void Adafruit_-DCMotor :: setSpeed (int speed){
32 this —>speed = speed;

33 }

35| Adafruit_MotorShield :: Adafruit_MotorShield ()

36 {

37 this—>motor_left = new Adafruit_-DCMotor(1);
38 this—>motor_right = new Adafruit_-DCMotor(2);
39 }

40

11| Adafruit-MotorShield ::” Adafruit-MotorShield () {
42 if (motor_left){

18

13
44
45

16

delete motor_left;
motor_left = nullptr;

if (motor_right){
delete motor_right;
motor_right = nullptr;

}

void Adafruit-MotorShield :: begin () {
// don’t need to do anything here

;| Adafruit_-DCMotor* Adafruit_MotorShield :: getMotor (int id){

switch (id){
case 1:
return this—>motor_left;
break ;
case 2:
return
break;
default :
return
}

this—>motor_right;

nullptr;

arduino.h (declaration)

#ifndef ARDUINOH
#define ARDUINOH
native arduino code to run

// arduino.h essentially enables

i|#define BIN (2)

const int A0 = 0xAO0;
const int Al = O0xAl;
#include <iostream>
#include <bitset >
#include " utils.h”
#include ”mainwindow.h”
#include "robot.h”
class _Serial{

public:

void begin(int){
// ignore baud rate

// all prints are redirected to stdout
template<typename T>
void print (T val){

std :: cout << val;
}

template<typename T>
void print (T val, int flag){
if (flag = BIN){
std ::cout << std:: bitset <8>(val);
}
// flags

not handling other yet

}

template<typename T>
void println (T val){

19

seamlessly with the application.

oA W N e

std :: cout << val << std::endl;

}

void println (){
std :: cout << std::endl;
}

s

extern _Serial Serial;
typedef unsigned char byte;

// Arduino APIs

extern long long millis ();

extern int analogRead(const int pin);
extern void setup();

extern void loop ();

extern void delay(int);

#endif // ARDUINOH

arduino.cpp (definition)

#ifndef ARDUINOH
#define ARDUINOH

// arduino.h essentially enables native arduino code to run seamlessly with the

j|#define BIN (2)

const int A0 = 0xAOQ;
const int Al = OxAl;

#include <iostream>
#include <bitset>

#include 7 utils.h”

s|#include ”mainwindow.h”

#include ”"robot.h”
class _Serial{

public:
void begin(int){
// ignore baud rate
}

// all prints are redirected to stdout
template<typename T>
void print (T val){
std :: cout << val;
}

template<typename T>
void print (T val, int flag){
if (flag = BIN){
std ::cout << std:: bitset <8>(val);
}

// ... not handling other flags yet

}

template<typename T>
void println (T val){

std :: cout << val << std::endl;
}

void println (){
std :: cout << std::endl;

20

application .

N

N

s

extern _Serial Serial;
typedef unsigned char byte;

// Arduino APIs

extern long long millis ();

extern int analogRead(const int pin);
extern void setup();

extern void loop();

extern void delay(int);

#endif // ARDUINOH

7.2.2 System Definition

Route.h (declaration)

#ifndef ROUTEH
#define ROUTEH

#include <QVector>

#include <QPointF>

#include <QPolygonF>

#include <QGraphicsPolygonltem>
#include <QPen>

#include <QString>

#include <QFile>

#include <QTextStream>

#include 7 utils.h”
struct Route

//QVector<QPointF> route;
QPolygonF poly;
QGraphicsPolygonltem poly_item;
QPen routePen;

public:
Route () ;

void draw () ;
void reset(int n); //randomize to length
void reset (const QVector<QPointF>& route);

void save(const QString& filename);
void load (const QString& filename);

b
extern Routex route;

#endif // ROUTEH

Route.cpp (definition)

#include ”route.h”
#include <random>
#include <iostream>

const double R.MIN = PXL_DIMS/S8;
const double RMAX = PXL_DIMS/2;

Routex route;

Route :: Route ()

21

12 QBrush routeBrush = QBrush(QColor:: fromRgb(0,0,0) ,Qt:: SolidPattern);
13 routePen = QPen(routeBrush, c2p(1.7));

11}

16| void Route::reset (int n){
17 // reinitialize to a route of n points

19 QVector<QPointF> route;

1 float x = RMAX;

2 float y = RMAX; // at center
3

1

for (int i=0; i<n; ++i){

5 float t = (2 * M_PI) * i / n;

6 float r = RMIN + (RMAX — R.MIN) * float (rand())/RANDMAX;
7 route . push_back (QPointF (x 4+ r*cos(t), y + rxsin(t)));

9 std::cout << "N : 7 << n << ” ROUIE SIZE : 7 << route.size () << std::endl;
30 reset (route) ;

31 }

33| void Route:: reset (const QVector<QPointF> &route){
34 // reset from vector

35 poly = QPolygonF (route) ;

36 poly_item .setPolygon (poly);
37 poly_item .setPen(routePen);
38 }

1| void Route::save(const QString& filename){
11 // save route to file

12 QFile file (filename);

43 if (file.open(QIODevice:: ReadWrite)) {

14 QTextStream stream (& file);

45

16 for (auto& p : poly){

17 stream << p.x() << 7, << p.y() << "\n’;
13 }

49

50 file .close () ;

51 }

53| void Route::load (const QString& filename){

54 // load route from file

55 QFile file (filename);

56 if (file .open(QIODevice:: ReadOnly)) {

57 QTextStream stream(&file);

58 QVector<QPointF> route;

59

60 while (! stream.atEnd ()){

61 QString line = stream.readLine();
62 QStringList pt-s = line.split(”,”);

63 QPointF pt(pt-s[0].toFloat(),pt-s[1].toFloat());
64 route.push_back(pt);

65 }

66

67 file.close();

68 Route:: reset (route);

Robot.h (declaration)

1|#ifndef ROBOTH
2|#define ROBOTH

(|#include <QObject>
s|#include <QPointF>

22

w oo

#include <QPolygonF>

#include <QGraphicsRectItem>

)|#include <QGraphicsEllipseltem>

#include <QGraphicsScene>
#include 7 utils.h”
#include ”"robotitem .h”

class Robot

{

public:
QPointF pos; // current position
float theta; // heading, measured from horz. radians
QPointF irOffset; // position of ir from center
float vel_l, vel_r; //left—right velocity of motors
float h; // height of IR sensor, inches
float fov; //field of view of IR sensor, radians
float ir-val_l; //value of ir reflectance sensors
float ir_val_r;
// frequently computed values
float cr; //cone radius
Robotltem= body;
public:
Robot (QGraphicsScene& scene,
QPointF pos, float theta,
QPointF irOffset , float h, float fov);
“Robot () ;
void reset (QPointF pos, float theta);
void reset (QPolygonF route);
void update();
void move(float delta, float dtheta);
void setVelocity (float left , float right);
void setPowerR(int r);
void setPowerL (int 1);
void setVelocityR (float r);
void setVelocityL (float 1);
void setIRHeight (float h);

void sense (QImage& img) ;
void setVisible (bool visible);

s

extern Robot*x robot;

7|#endif // ROBOTH

Robot.cpp (definition)

#include 7 utils.h”
#include "robot.h”

23

o}

#include <iostream>

// 1 pxl = .5 cm
// 270 x 270 cm world

// robot = 20x16 cm
Robot* robot = nullptr;
float coneRadius(float h, float fov){

return hxtan(fov/2);

// RobotBody

Robot : : Robot (QGraphicsScene& scene, QPointF pos, float theta, QPointF irOffset ,

float fov):
pos (pos) ,
theta(theta),
irOffset (irOffset),
h(h),
fov (fov),

r (coneRadius (h, fov))

vel_.l = vel_r = 0.;

body = new Robotltem (pos, QPointF (ROBOT_LENGTH,ROBOT_-WIDTH) ,irOffset ,
// Robotltem will take care of graphics
scene .addItem (body) ;

}

Robot :: ~ Robot () {
if (body){
delete body;
body = nullptr;

}

void Robot::reset (QPointF p, float t){
pos=p; theta=t;
body—>setPos (pos, theta);

}
void Robot:: reset (QPolygonF route){

pos = route.front ();

float dst-x = route[1].x();

float dst.y = route[1].y();

theta = atan2(pos.y() — dst_y ,dst-x — pos.x());
}

void Robot::move(float delta, float dtheta){
theta 4= dtheta x DT;
pos += delta * QPointF(cos(theta), —sin(theta)) * DT;
update () ;

)| void Robot:: update (){

float w = (vel_r — vel_.l) / WHEELDISTANCE;
if(w!= 0){
float R = (vel_l + vel_r) / (2%w);

QPointF ICC = pos + R * QPointF(—sin (theta), —cos(theta));
// ICC = virtual center of rotation

// update position based on obtained kinematics prediction

float x = pos.x();
float y = pos.y();

24

theta ,

float h,

cr);

float iccx = ICC.x();
float iccy = ICC.y();

w oo =

74 pos.setX (

75 cos(—w+DT) * (x — icex) +

76 —sin(—w+DT) x (y — iccy) +

77 icex

78)

79 pos.setY (

80 sin(—w+DT) * (x — iccx) +

81 cos(—w+DT) * (y — iccy) +

82 iccy

83);

84 theta 4= w * DT;

85 }else{

86 // if w== 0, then division by zero would be bad..

87 // since it’s a special (and well—defined) case, we should handle this
88 pos += vel_l * QPointF(cos(theta), —sin(theta)) % DT;

92 body—>setPos (pos, theta);

94| void Robot::setVelocityL (float v){
95 vel_l = v;

96 }

o3| void Robot::setVelocityR (float v){
99 vel_r = v;

100 }
101
102 void Robot ::setPowerL (int pow){

103 // convert power to velocity

104 // then convert it back to pixel units
105 setVelocityL (c¢2p (pow2vel (pow)));

106 }
107
108
10| void Robot ::setPowerR(int pow){
110 // convert power to velocity

111 // then convert it back to pixel units
112 setVelocityR (c¢2p (pow2vel (pow)));

113] }

114

115
116| void Robot::setVelocity (float 1, float r){
117 setVelocityL (1);
118 setVelocityR (r);
119 }
120

121| void Robot::setIRHeight (float h){

122 this—>h = h;

123 this—>cr = coneRadius(h, fov);

124 body—>setCR (this—>cr);

125 }

126

127] void Robot :: sense (QImage& image){

128 // poll a conical section of the ground—plane beneath the IR sensors
129 // and average out the readings of pixels

130

131 float 1.1 = irOffset .x();

132 float 1.2 = irOffset.y();

133

134 QPointF ir_root = pos + QPointF (1.1 % cos(theta), —1_.1 % sin(theta));
135 QPointF ir_1 = ir.root — QPointF (1.2 * sin(theta), 1.2 x cos(theta));
136 QPointF ir_r = ir-root 4+ QPointF(1-2 % sin(theta), 1-2 x cos(theta));
137

138 float cR = coneRadius(h, fov);

25

139
140
141

142

144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

int i_-cR = round(cR);

int n = 0;
float sum-1=0;
float sum.r = 0;
for (int offsetX = —i_cR; offsetX <= i_cR; +4offsetX){
for (int offsetY = —i_cR; offsetY <= i_cR; ++offsetY)

if ((offsetX x offsetX + offsetY x offsetY) < (cR * cR)){
QPointF offset (offsetX , offsetY);

QRgb col_l = image.pixel((ir-1 4+ offset).toPoint());
QRgb col_r = image.pixel ((ir-r + offset).toPoint());

sum-1 += qGray(col_-1) / 255.0;
sum_r += qGray(col_r) / 255.0;
+n;

}

// set ir values

if (n){
ir_.val_l = sum_l / n
ir_.val_-r = sum.r / n

}

void Robot::setVisible (bool visible){
body—>setVisible (visible);
}

26

	Introduction
	Hardware
	Control
	BangBang
	PID Control
	Memory Prediction

	Calibration
	Motor Characterization
	IR Reflectance Sensor Calibration

	Simulation
	Kinematics

	Results & Reflection
	Appendix: Code
	Memory-Prediction Implementation
	Simulator Implementation
	Arduino Interface
	System Definition

