
Exercise 1-1.

1. Stocks

2. Stocks

3. Stocks

4. Flows Neither; after I sought explanation from the solutions, I understood it as it neither

represented a quantity, nor contributed to it.

5. Stocks Neither; I thought since there is a set cap to the battery charge, it may as well be

conceptualized as a contained quantity (like water in a bowl); i.e. although it is not a physical

quantity, it can be mathematically quantified, in numbers, dependent on inflow(charging) and

outflow(use)

6. Flows

7. Stocks & Flows Neither; I thought speed is a stock since it is certainly a quantity that stays put

(the law of inertia) without external interference, which is acceleration/deceleration. Likewise, I

thought speed is also a flow since it impacts the distance of the runner from a fixed point.

Although the solution does not regard distance as a stock, I reasoned that since distance is also a

scalar quantity, it might as well be a stock – I may be in for too much abstraction.

8. Stocks

9. Stocks The reasoning is akin to that of #7(since it represents a rate).

10. Stocks

11. Stocks The reasoning is akin to that of #7.

12. Flows I missed the “per adult” part.

13. Flows

14. Stocks

15. Flows

16. Flows Again, I thought temperature might as well be regarded as a stock, but I may be in for too

much abstraction.

Exercise 1-2.

 Tree = The net amount of trees in the Northeastern United States

 Birth = “Source” of tree influx, impacted by seeds which are dependent on the size of tree

stock.

 Death = Destination of dead trees.

 Population = Human population

 Planting = Deliberate efforts to reforestation, commanded by eco-loving people.

 Felling = Cutting down trees as to utilize them as resources, impacted by human demand.

 Famine = Diseases which often causes trees’ decimation.

 Precipitation = Water supply, to which the sustenance of trees are reliant.

 I thought I was to delineate the relationship between the various labels in the diagram; to

explicitly identify them in their conceptual representation :

 Source : Birth

 Sink : Death

 Stock : # of trees in Northeastern U.S.

 Inflow : Birth & Planting

 Outflow : Death & Felling

 Links & Variables : Human Population impacts Planting & Felling; # of trees impact the rate

of birth; Precipitation affects the general growth and sustenance of trees – thus birth and

death. Famine accounts for (partially) the death rate of trees.

 Generally, I feel that this model is more or less adequate in describing the dynamics of tree

growth in New England; I certainly did not consider other natural factors, like sunlight,

nutrients in the soil, harmful substances in the air, the supply of oxygen, etc., which I feel

are often constant (at least in the observable time range) and would simply complicate the

model.

Exercise 1-3.

(a) dW/dt = G(W,a,i) – E(e) – H(o)

(b) 1. dI/dt = P(I,R,Df) – C(I,Dc);

2. dP/dt = D(R,T,Df) – P(I,R,Df);

3. dU/dt = -D(R,T,Df);

In (a):

 W = Water in Lake Mead <Stock>

 t = Time point (…though trivial)

 G = Inflow through Glen Canyon Dam <Flow>

 a = Availability of water <Variable>

 i = Inflow Policy <Variable>

 E = Outflow through Evaporation <Flow>

 e = Evaporation rate <Variable>

 H = Outflow through Hoover Dam <Flow>

 O = Outflow Policy <Variable>

In (b) :

 I = Current Inventory <Stock>

 t = Time point (trivial)

 P = Production <Flow>

 R = Proven Reserves <Stock>

 Df = Forecasted Demand <Variable>

 C = Consumption <Flow>

 Dc = Current Demand <Variable>

 D = Discovery <Flow>

 T = Technology <Variable>

 U = Ultimately recoverable oil <Stock>

Exercise 1-4.

update_stocks.m :

reserve = reserve- 32; %billion barrels
inventory = inventory + 32 - 32; %ditto

check_stocks.m :

disp(reserve); %billion barrels
disp(inventory); %ditto

Execution:

>> reserve =1700;
>> inventory = 6.9;
>> check_stocks
 1700
 6.9000

>> update_stocks
>> check_stocks
 1668
 6.9000

>> update_stocks
>> check_stocks
 1636
 6.9000

>> update_stocks
>> check_stocks
 1604
 6.9000

 Running the scripts thereafter yielded a linear decrease of the inventory (-32 billion
barrels/year).

 This model is inadequate for the prediction of global oil supply, due to its naïve assumptions
(constant rates). That is, it fails to take account of technological innovations which can factor
into the efficiency of oil use and perhaps the demand for oil altogether: i.e. the development of
alternative energy sources or – in the negative side – the emergence of a new industry which
may greatly increase the demand for oil.

ModSim Exercise 2

Jamie Cho

2.1)

1. Constant flows

A. Given sufficient number of people wanting to enter a building, and finite number of

known entrance, and the building spatial enough to contain every person -- in terms

of modeling, this implies sources (people outside), sinks (building), and regulated rate

of inflow (entrance), the inflow of people to the building will be constant.

B.

C. E =
𝑑𝑃

𝑑𝑡
= 𝑟𝑒 (const. var.)

- Units

E: Entrance Flow, kg/minute

P: Biomass of persons, kg

t: Time, minute

Although number of person is a discrete quantity, and so would be the flow, with

adequate number of people and mathematical assumptions, a continuous model

can be adopted.

2. Flows proportional to single stock

A. The inflow (birth) and the outflow (death) of people depends on the size of human

population.

B.

C.
𝑑𝑃

𝑑𝑡
= 𝐵(𝑃) − 𝐷(𝑃) = 𝑘𝑏𝑃 − 𝑘𝑑𝑃

- Units

P: Biomass of the population, Metric Tons

t: Time, year

B: Birth, Metric Tons/year

D: Death, Metric Tons/year

k_b: Birth rate const., unitless scalar

k_d: ,Death rate const., unitless scalar

3. Flows proportional to the difference between two stocks

A. The heat flow in a conductible material is dependent on the magnitude of

enthalpy(amount of thermal energy) on either ends.

B.

C. 𝑄 =
𝑑𝐸

𝑑𝑡
= 𝑘𝑇∆𝐸 = 𝑘𝑇(𝐸𝐿 − 𝐸𝑅)

- Units

Q: Heat, Joules/second

E: Enthalpy, Joules

t: Time, seconds

k_T: Heat transfer constant, unitless scalar (for the purposes of modeling)

E_L: Enthalpy of the Left end, Joules

E_R: Enthalpy of the Right end, Joules

4. Non-monotonic flows

A. The flow of blood from an incision in the artery, which would depend on the pressure

of blood outflow as dictated by the heart.

B.

C.
𝑑𝐵

𝑑𝑡
= 𝐹𝐵(𝑃)

- Units

B = Blood, Liters

t = Time, seconds

F_B = Flow of Blood, Liters/second

P = Pressure, external variable dependent on factors such as time.

5. Flows that depend on time

A. The inflow of the biomass of salmon stock depends on time, as its reproduction

occurs seasonally – the “salmon run” occurs during the fall, September through

November.

B.

C.
𝑑𝑃𝑆

𝑑𝑡
= 𝐵(𝑠(𝑡), 𝑃𝑆) − 𝐷(𝑃𝑆)

 Units

 P_S = Biomass of Salmon, Metric Tons

 t = Time, month

 B = Birth flow, Metric Tons/month

 s = season (arbitrary variable)

 D = Death (or Biomass dissipation due to death) flow, Metric Tons/month

2.2)

1.

2.

𝐹𝐼 =
𝑑𝑆

𝑑𝑡
= 𝐶 ∗ 𝑘𝑟 ∗ 𝑘𝑡 ∗

𝑆

𝑃

𝐹𝑃 =
dD

dt
= D(13), F𝐶 =

𝑑𝐶

𝑑𝑡
= 𝐶(9)

Which is equivalent to:

Infection flow = Contagious *Contact Rates*(Transmissibility*Susceptible/Population)

Progression flow = Population at 13th day of Dormant Population

Cure flow = Population at 9th day of Contagious Population

Data Plots:

Figure 1. The time series of the number of Ill Personnel.

3.

Figure 2. The Times series that illustrates the transition in population dynamics with respect to measles.

Figure 3. The Time series that depicts the intimate relationship between contagious and dormant persons.

In my implementation, the epidemic peaks the 81st day with 278,518 persons affected.

After the 111th day, the number of ill personnel was zero; after the 90th day, no more spread of

the disease was observed, and all but 1 of the population had undergone the process of the

disease. Although this does not match practical data from experience, this model is based on the

assumption that afflicted persons freely interact with any of the population – and fails to take into

account the societal efforts to thwart the disease, which serves as an adequate explanation of why

this model might fail to reflect on the reality.

 When I altered the immunization percentage from 85% to 90%, 163,611 persons were ill

on the 96th day (Peak). This is not only a display of delaying the spread of the disease – which

provides longer time to prepare and counteract the epidemic – but also the evidence of greatly

reduced severity. On the other hand, when I limited the contact rates from 12 persons a day to 6

persons a day, greater delay in time – peaking at the 113th day – was observed, with 214939

persons ill. Thus, it seems that the contact rates have greater effect in delaying the propagation of

the disease than reducing its severity, which is logically coherent with intuition.

2.3)

1.

2. The time series looked congruent, with minor discrepancies in curvature magnitude.

3.

update_haddock.m

%precondition : varialbe H represents Haddock Stock
% g is the growth rate constant,
% and K is the carrying capacity. (same conventions from exercise)
% the units are in metric tons, per year.

H = H + g*H*(1-H/K);
%postcondition : H now contains the changed Haddock Stock after an year.

plot_haddock.m

H = 100000; %metric tons
K = 10000000; %metric tons
g = 0.10; % years^-1
hold on
for i = 0:100
 plot(i,H,'*');
 update_haddock;
end

The two plots looked nearly identical.

Figure 2. Matlab Time Series

Figure 3. Insight Maker Time Series

ModSim Exercise 3

Jamie Cho

1.

1) haddock_flow.m:

%res = haddock_flow(H,K,g)
%computes the flow level from
%current value of Stock, Carrying Capacity, and
%growth rate.
function res = haddock_flow(H,K,g)
 res = g*H*(1 - H/K);
end

2) simulate_haddock3.m:

%simulate_haddock3()
%simulates haddock stock population
%over the course of 150 years.
function simulate_haddock3()
 haddock = 120000;%metric tons
 cap = 8.7*1000*1000;%metric tons
 growth = 0.07; %per year

 hVec = zeros(150,1);
 for i = 1:150
 hVec(i) = haddock;
 haddock = haddock + haddock_flow(haddock,cap,growth);
 end

 disp(haddock);
 plot(hVec);
 xlabel('Time (years)');
 ylabel('Haddock Biomass (metric tons)');
 title('Time Series of Haddock Biomass over 150 Years');
end

3) resultant plot:

2.

1) infection_flow.m:

%res = infection_flow(S,P,C,k_c,k_t)
%returns infection flow amount with values:
%S = Susceptible Personnel
%P = Total Population
%C = Contagious Personnel
%k_c = contact rate constant
%k_t = transmissivity constant
function res = infection_flow(S,P,C,k_c,k_t)
 res = round(k_c*k_t*S/P*C);
end

2) progression_flow.m:

%res = progression_flow(D)
%D = Last Element of Dormant Population
function res = progression_flow(D)
 res = D;
end

3) cure_flow_m:

%res = cure_flow(C)

%C = Last Element of Contagious Population
function res = cure_flow(C)
 res = C;
end

4) simulate_measles_m:

%simulate_measles(vaccination, population, contact_rates,

transmissibility)
%simulation of measle spread
%with internal given constants
%and control variables.
%Units:
%vaccination = decimal
%population = 1 person
%contact_rates = person / day
%transmissibility = person / contact

function simulate_measles(vaccination, population, contact_rates, ...
 transmissibility)
 %controls
 %vaccination = 0.85;
 %population = 2200000;
 %contact_rates = 12;
 %transmissibility = 0.9;

 %initialization
 contagious = zeros(8,1);
 dormant = zeros(12,1);
 immune = vaccination * population;
 susceptible = (1 - vaccination) * population;
 contagious(1) = 1;

 %plotting vectors
 vInfected = zeros(150,1);
 vImmune = zeros(150,1);
 vSusceptible = zeros(150,1);

 %simulation
 for time = 1:150
 immune = immune + cure_flow(contagious(end));

 for i = length(contagious)-1:-1:1
 contagious(i+1) = contagious(i);
 end
 contagious(1) = progression_flow(dormant(end));
 for i = length(dormant)-1:-1:1
 dormant(i+1) = dormant(i);
 end
 infection =

infection_flow(susceptible,population,sum(contagious),...
 contact_rates,transmissibility);
 dormant(1) = infection;
 susceptible = susceptible - infection;

 vInfected(time) = sum(dormant) + sum(contagious);
 vImmune(time) = immune;
 vSusceptible(time) = susceptible;
 end
 hold on
 plot(vInfected);
 plot(vImmune);
 plot(vSusceptible);
 title('Measle Spread Dynamics Time Series');
 xlabel('Time (days)');
 ylabel('Humans (population)');
 legend('show')
 legend('Infected','Immune','Susceptible','Location','southeast');
 hold off
end

5) command line:
>> simulate_measles(0.85,2200000,12,0.9);

6) resultant plot:

In both scenarios, the plots were equivalent to that of InsightMaker.

 Note: as the implementation of the model was strictly based on the daily propagation

from one state to the next – i.e., the “contagious” group will be cured in 8 days – the

arrangement in time steps could not be accommodated.

The major difference in the approach of the Solution and my solution was due to the different

method by which the implementation of the scenario occurred: I tracked the state-transitions of

each group in the population: on the 14th day, the dormant period would end and the infected

person would become contagious. This is a different approach from the solution that applied

simpler probabilistic mechanism to the flow.

ModSim Exercise 4

Jamie Cho

1.

1) alcohol_net_flows.m

%params(1) = d
%params(2) = k
%params(3) = Vm
%params(4) = Km
function res = alcohol_net_flows(stock, params)
res = [params(1) - params(2)*stock(1), ...
 params(2)*stock(1) - params(3)*stock(2)/(params(4)+stock(2))];
end

2) simulate_alcohol.m

function simulate_alcohol()

stocks = [.9,0];
params = [0,0.24/60,1.31/60,3.67];
%params = [0,1/.7*(1/3600),.4/3600,.2];
lim = 5*60*60;

V_s1 = zeros(lim,1);
V_s2 = zeros(lim,1);
for i=1:lim
 stocks = stocks + alcohol_net_flows(stocks,params);
 V_s1(i) = stocks(1);
 V_s2(i) = stocks(2);
end
hold on
plot(V_s1);
plot(V_s2);
end

3) simulate_alcohol2.m

function simulate_alcohol2()

stocks = [.9,0];
params = [0,0.24/60,1.31/60,3.67];
%params = [0,1/.7*(1/3600),.4/3600,.2];
lim = 5*60*60;
stepsize = 100;

V_s1 = zeros(lim/stepsize,1);
V_s2 = zeros(lim/stepsize,1);

for i=1:stepsize:lim
 stocks = stocks + stepsize*alcohol_net_flows(stocks,params);
 V_s1(1+floor(i/stepsize)) = stocks(1);
 V_s2(1+floor(i/stepsize)) = stocks(2);
end
hold on

plot(V_s1);
plot(V_s2);
end

Graph (Unitless concentration):

Figure 1 BAC Time Series, simulated per every second

Figure 2. BAC Time Series, simulated per every 100 seconds.

2. duck.m:

function duck()

 figure;

 rho = 0.3; %g/cm^3

 rad = 10; %cm

 V_tot = @(r) 4*pi*r^3/3;

 V_sub = @(r,d) pi/3*(3*r*d^2-d^3);

 eqn = @(d) V_sub(rad,d)*1 - V_tot(rad)*rho;

 ezplot(eqn,[-rad*2,rad*2]);

 disp(fzero(eqn,rad));

 figure;

 plotVec = zeros(100,100);

 eqn2 = @(rh,rd) V_tot(rd)*rh - V_sub(rad,10)*1;

 for i = 1:100

 for j = 1:1000

 plotVec(i,j) = eqn2(i/10,j);

 end

 end

 mesh(plotVec);

 xlabel('radius (mm)');

 ylabel('density (g/cm^3)')

 %for i = 1 : 20

 % for j = 1 : 20

 % plotVec(i,j) = eqn

 % end

 %end

 %figure;

end

fzero result : 7.2651 cm

Figure 3 3d plot of weight difference with respect to density and the radius of the duck,
given the displacement of 10 cm.

ModSim Exercise 5

Yoonyoung Cho

October 11 2015

1 Simple Conduction Model

Figure 1: Rudimentary representation of the coffee-cup system

∆U = mc∆T

∆U = Q− (W = 0)

Q = −kA(Tself − Tenv)

d

mc∆T = −kA(Tself − Tenv)

d

∴ ∆T = −kA(Tself − Tenv)

dmc

In its MATLAB implementation, this flow was modeled as follows:

1 %Part I
2

3 r = 8/2 / 100; %m
4 h = 10 / 100; %m
5 A = pi∗rˆ2 + 2∗pi∗r∗h; %total surface area, mˆ2
6

7 d = 0.7 / 100;%m
8 c = 4186; %J/kg∗K
9 rho = 1000; %kg/mˆ3

1

10 k = 1.5; %W/(m∗K)
11

12 m = rho∗pi∗rˆ2∗h; %kg
13

14 T s = 370; %K
15 T e = 290; %K
16

17 conduction = @(k,A,T s,T e,d,m,c) −k∗A∗(T s−T e)/(d∗m∗c);
18

19 range = 30;
20 vCoffee = zeros(1,range);
21 intv = 1:range;
22

23 for t = intv
24 vCoffee(t) = T s;
25 T s = T s + conduction(k∗60,A,T s,T e,d,m,c);%k to minutes
26 end
27 plot(intv−1,vCoffee);
28 title(’The Time Series of the Temperature of Coffee’)
29 xlabel(’Time (minutes)’);
30 ylabel(’Temperature of Coffee(K)’);

The resultant plot:

Time (minutes)

0 5 10 15 20 25 30

T
e
m

p
e
ra

tu
re

 o
f

C
o

ff
e

e
(K

)

290

300

310

320

330

340

350

360

370
The Time Series of the Temperature of Coffee

Figure 2: The cooling of 370K coffee over 30 minutes.

This graph is consistent to intuition; a hot coffee would not take more than 30 minutes to cool in room

2

temperature; of course, with the addition of other factors, the coffee should cool down at a greater rate
(unless given an external heat source).

2 Adding a Cream

In adding a cream, I would assume that the internal energy of the mixture after the addition is simply the
sum of the internal energy of the two systems, and I would also set the internal energy to be proportional
to the specific heat, mass, and the temperature of the respective substances. If I only knew the volume, I
would further assume that the density of the cream similar to that of the coffee in order to deduce the mass.
I will denote the coffee as system 1 and the cream as system 2 in the following qualitative analysis(as it is
by no means numeric). Accordingly,

Emix = E1 + E2

E1 = k ∗ c1 ∗m1 ∗ T1
E2 = k ∗ c2 ∗m2 ∗ T2

Emix = k ∗ c1 ∗m1 ∗ T1 + k ∗ c2 ∗m2 ∗ T2
= k ∗ c1 ∗m1 ∗ Tmix + k ∗ c2 ∗m2 ∗ Tmix

Tmix =
k ∗ c1 ∗m1 ∗ T1 + k ∗ c2 ∗m2 ∗ T2

k ∗ c1 ∗m1 + k ∗ c2 ∗m2

Tmix =
c1 ∗m1 ∗ T1 + c2 ∗m2 ∗ T2

c1 ∗m1 + c2 ∗m2

Here, k is an arbitrary proportionality constant. Now, this is obviously a very rough sketch without knowing
about how the physical system actually interacts. Upon this model, my next iteration would be to apply
this to the simulation. The factors that impact the conduction flow are surface area, the temperature of the
system and the environment, the thickness of the cup, the mass of the system, and the specific heat of the
system. Of them, the surface area, the temperature of the system, the mass of the system, and the specific
heat of the system undergoes a change when cream is added.

Making realistic assumptions, the surface area would change by V2

πr2 ∗ 2πr; the new temperature was
determined above; the mass of the system is simply m1 +m2, and it is possible to deduce the new ”specific
heat” of the material under how I modeled the internal energy; since Emix = k ∗ (c1 ∗m1 + c2 ∗m2) ∗ Tmix
and the internal energy is represented as E = k ∗ c ∗m ∗ T , it is reasonable to claim that the specific heat
term would now correspond to (c1 ∗m1 + c2 ∗m2)/(m1 +m2).

Therefore, in my next iteration, I will update the associated variables as described above at the moment
I put in the cream. For the purposes of the model, I will assume that the temperature of the system would
immediately settle down to the intermediate temperature, because it would be beyond the scope of this
model to take into account the complex convection mechanism within the mixture itself. In determining
the optimal moment at which to put the cream in the coffee, I would run the simulation 60 times, over an
hour, and have the simulation return the moment at which the coffee temperature fell below the drinkable
temperature. I would then take the resultant values and plot them against the moment at which the cream
was put in. The punchline graph would roughly look like:

3

Figure 3: The graph of cream insertion time vs. time it took to cool down to a certain temperature (perhaps
60 degrees Celcius)

4

ModSim Exercise 6

yoonyoung.cho

October 2015

1 Implementing with ode45

The following is the same model as the previous exercise, now transcribed to an ode45-compatible code;

1 function simulate()
2

3

4

5 r = 8/2/100; %radius, m
6 h = 10/100; %height, m
7 A = pi∗rˆ2+2∗pi∗r∗h; %surface area, mˆ2
8 d = 0.7/100;%thickness, m
9 c = 4186; %specific heat, J/(kg∗K)

10 rho = 1000; %density, kg/mˆ3
11 k = 1.5; %heat conductivity, W/(m∗K) => (in seconds)
12 V = pi∗rˆ2∗h; %volume, mˆ3
13 m = rho∗V; %mass, kg
14

15 T s = 370;
16 T e = 290;
17

18 TbyE = @(E,m,c) E/(m∗c);
19 EbyT = @(T,m,c) T∗m∗c;
20

21 E s 0 = EbyT(T s,m,c);
22

23 [T,E s] = ode45(@Q,[0 30],E s 0);
24

25 plot(T,TbyE(E s,m,c));
26

27

28 function cond = Q(t,E)
29 cond = −k∗60∗A∗(TbyE(E,m,c)−T e)/d;
30 end
31

32 end

And the resultant plot is shown below:

1

Time (min)

0 5 10 15 20 25 30

T
e

m
p

e
ra

tu
re

 (
K

)

290

300

310

320

330

340

350

360

370
Temperature of coffee over time (conduction)

Figure 1: The temperature of coffee over time. In this elementary model, only conduction was taken into
account in terms of the cooling of the coffee.

This graph is coherent the previous one, which did not utilize ode45.

2 Adding 100mL cream

The following MATLAB code is a function that takes the time to insert the cream as an argument to produce
a plot accordingly.

1 function simulate(addCreamTime)
2 figure;
3

4 r = 8/2/100; %radius, m
5 h = 10/100; %height, m
6 A = pi∗rˆ2+2∗pi∗r∗h; %surface area, mˆ2
7 d = 0.7/100;%thickness, m
8 c = 4186; %specific heat, J/(kg∗K)
9 rho = 1000; %density, kg/mˆ3

10 V = pi∗rˆ2∗h; %volume, mˆ3
11 m = rho∗V; %mass, kg
12 k = 1.5; %heat conductivity, W/(m∗K) => (in seconds)
13 T = 370;
14 T e = 290;
15 E 0 = EbyT(T,m,c);
16

17 %Q = @(t,E) −k∗60∗A∗(TbyE(E,m,c)−T e)/d;

2

18

19 if(addCreamTime>0)
20 [t,E] = ode45(@conduction,[0 addCreamTime],E 0);
21 plot(t,TbyE(E,m,c));
22 [h,A,V,T,m,c,E 0] = addCream(h,r,V,m,c,E(end));
23 else
24 plot(0,TbyE(E 0,m,c),’o’);
25 [h,A,V,T,m,c,E 0] = addCream(h,r,V,m,c,E 0);
26 end
27

28 hold on;
29

30 if(addCreamTime<30∗60)
31 [t,E] = ode45(@conduction,[addCreamTime 30∗60],E 0);
32 plot(t,TbyE(E,m,c));
33 else
34 plot(30∗60,T,’o’);
35 end
36 hold on;
37

38 line(xlim, [273+60 273+60]);
39

40 function Q = conduction(˜,E)
41 Q = −k∗A∗(TbyE(E,m,c)−T e)/d;
42 end
43

44 function [h new,A new,V new,T new,m new,c new,E new] = addCream(h,r,V,m,c,
E)

45 T = TbyE(E,m,c);
46

47 %CREAM STUFF
48 T c = 275; %K
49 V c = 100/1e6;% mˆ3
50 c c = 4186; %specific heat, J/(kg∗k)
51 rho c = 1000; %density, kg/mˆ3
52 m c = rho c∗V c; %kg
53 E c = EbyT(T c,m c,c c); %J
54

55 %END OF CREAM STUFF
56 %update constants
57 h new = h + V c/(pi∗rˆ2);
58 A new = pi∗rˆ2+2∗pi∗r∗h;
59 V new = V + V c;
60 T new = (E+E c)/(m∗c+m c∗c c);
61 m new = m + m c;
62 c new = (c∗m+m c∗c c)/(m new);
63 E new = E c+E;
64 end
65 end
66

67

68 function res = TbyE(E,m,c)
69 res = E/(m∗c);
70 end

3

71

72 function res = EbyT(T,m,c)
73 res = T∗m∗c;
74 end

In the case of adding the cream at the two endpoints (special cases), since ode45 needs to be executed
for an interval of which the end must not be the same as the beginning, only one simulation was conducted
by adjusting the control flow. In this case, the transition point was marked as a circle, as it couldn’t be
represented by a line. The resultant plot is shown below, for adding the cream at the beginning, middle,
and the end, respectively:

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800

T
e

m
p

e
ra

tu
re

 (
K

)

290

300

310

320

330

340

350

360

370
Temperature of Coffee over time

Drinkable Temperature

Figure 2: Cream added at t=0

4

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800

T
e

m
p

e
ra

tu
re

 (
K

)

290

300

310

320

330

340

350

360

370
Temperature of Coffee over time

Drinkable Temperature

Figure 3: Cream added at t = 15 min

5

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800

T
e

m
p

e
ra

tu
re

 (
K

)

280

290

300

310

320

330

340

350

360

370
Temperature of Coffee over time

Drinkable Temperature

Figure 4: Cream added at t = 30 min

As seen, the falling slope is steepest at the beginning – which is the predicted behavior, as conduction is
proportional to the differnce in temperature between the system and the environment. Therefore, it seems
most advantageous to procrastinate the adding of the cream until the point at which adding the cream would
immediately make the coffee drinkable.

6

ModSim Exercise 7

Yoonyoung Cho

October 27 2015

Overview

The following MATLAB code oversees the entire assignment:

1 helper.m
2

3 %Part I
4 disp(simulate 4(1∗60));
5 disp(simulate 4(5∗60));
6 disp(simulate 4(10∗60));
7

8 %Part II
9 for i = 0:30∗60

10 ans vec(i+1) = simulate 4(i);
11 end
12 figure;
13 plot((0:30∗60) / 60, ans vec);
14 xlabel(’Cream Addition Time(min)’);
15 ylabel(’Drinkable Time(sec)’);
16 title(’Drinkable Time per Cream Addition’);
17

18 [val,time] = min(ans vec);
19 disp(time);
20 %Part III
21 disp(fminsearch(@simulate 4,5.0∗60));

Simulate 4 is a function that takes cream-addition time as an argument and returns the time at which
the drinkable temperature is reached for the coffee.

In Part I, three values are investigated : the drinkable time as cream is added 1 minutes, 5 minutes, and
10 minutes after the simulation, respectively.

In Part II, the punchline plot is generated. This is done by measuring the drinkable time output from the
cream-addition time (input) – ranging from 0 minutes(immediately) to 30 minutes – and then juxtaposing
the result with the input time.

In Part III, the same simulation function undergoes the MATLAB function fminsearch in order to identify
the exact optimal time at which to add the cream, as well as verifying the plot obtained from Part II.

1 Restructuring

Without further ado, simulate 4.m will be presented:

1 function drinkTime = simulate 4(addCreamTime)
2

3 %initial values
4 r = 8/2/100; %radius, m

1

5 h = 10/100; %height, m
6 A = pi∗rˆ2+2∗pi∗r∗h; %surface area, mˆ2
7 d = 0.7/100;%thickness, m
8 c = 4186; %specific heat, J/(kg∗K)
9 rho = 1000; %density, kg/mˆ3

10 V = pi∗rˆ2∗h; %volume, mˆ3
11 m = rho∗V; %mass, kg
12 k = 1.5; %heat conductivity, W/(m∗K) => (in seconds)
13 T = 370;
14 T e = 290;
15 E 0 = EbyT(T,m,c);
16

17 if(addCreamTime>0)
18 zeroCross = @(T,E) zCross(T,E,m,c);%Event, reaching drinkable temperature

.
19 %passes additional parameters m,c (mass & specific heat) to compute the
20 %temperature from energy.
21 opt = odeset(’Events’,zeroCross);
22 [t,E,alpha,beta,gamma] = ode45(@conduction,[0 addCreamTime],E 0,opt);
23

24 if(length(alpha) ˜= 0) % = there is a solution
25 drinkTime = alpha;
26 return;
27 end
28

29 [h,A,V,T,m,c,E 0] = addCream(h,r,V,m,c,E(end)); %update constants’ values
30 if(TbyE(E 0,m,c) < 320)% = adding cream resulted in drinkable mixture
31 drinkTime = addCreamTime;
32 return;
33 end
34 else
35 [h,A,V,T,m,c,E 0] = addCream(h,r,V,m,c,E 0); %update constants’ values
36 if(TbyE(E 0,m,c) < 320)% = adding cream resulted in drinkable mixture
37 drinkTime = addCreamTime;
38 return;
39 end
40 end
41

42 %COFFEE Temperature simulation after adding Cream
43

44 zeroCross = @(T,E) zCross(T,E,m,c); %Event, reaching drinkable temperature.
45 %passes additional parameters m,c (mass & specific heat) to compute the
46 %temperature from energy.
47 opt = odeset(’Events’,zeroCross);
48 [t,E,alpha,beta,gamma] = ode45(@conduction,[addCreamTime 30∗60],E 0,opt);
49 drinkTime = alpha; %assumption : the drinkable Time will be reached before

30 min passes.
50 return;
51

52 %conduction flow
53 function Q = conduction(˜,E)
54 Q = −k∗A∗(TbyE(E,m,c)−T e)/d;
55 end
56

2

57 %simulating addition of cream
58 function [h new,A new,V new,T new,m new,c new,E new] = addCream(h,r,V,m,c,

E)
59 T = TbyE(E,m,c);
60

61 %CREAM STUFF
62 T c = 275; %K
63 V c = 80/1e6;% mˆ3
64 c c = 4186; %specific heat, J/(kg∗k)
65 rho c = 1000; %density, kg/mˆ3
66 m c = rho c∗V c; %kg
67 E c = EbyT(T c,m c,c c); %J
68

69 %END OF CREAM STUFF
70 %update constants
71 h new = h + V c/(pi∗rˆ2);
72 A new = pi∗rˆ2+2∗pi∗r∗h;
73 V new = V + V c;
74 T new = (E+E c)/(m∗c+m c∗c c);
75 m new = m + m c;
76 c new = (c∗m+m c∗c c)/(m new);
77 E new = E c+E;
78 end
79 end
80

81

82 function res = TbyE(E,m,c)
83 res = E/(m∗c);
84 end
85

86 function res = EbyT(T,m,c)
87 res = T∗m∗c;
88 end
89

90 function [v,isT,dir] = zCross(t,E,m,c)
91 v = TbyE(E,m,c)−320;
92 isT = 1;
93 dir = 0;
94 end

The script is written such that no global variables, other than immutable constants, were used; the
functions are encapsulated, and is coordinated in terms of logical association. For instance, the flow function
is a part of the simulation – therefore, it was nested.

The simulation itself is composed of three phases : before, during, and after adding the cream. At any
time, if the coffee temperature crosses the 320K (drinkable temperature) border, the function terminates
and returns the time at which the event occurred.

The output values, for the investigation of discrete values, are as follows:

3

Table 1: Drinkable Time Investigation Table

CreamAddition(min) Drinkable(sec)

1 291.0789
5 300
10 319.3362

2 Punchline Graph

It can be easily seen that the function above can be applied to any point in time – in whole units of seconds
– at which to add the cream. Applying this to the interval from 0 to 30 minutes, the punchline graph below
was generated:

Cream Addition Time(min)

0 5 10 15 20 25 30

D
ri
n
k
a
b
le

 T
im

e
(s

e
c
)

240

250

260

270

280

290

300

310

320
Drinkable Time per Cream Addition

Figure 1: Part II Result: the plot of the time at which the coffee reached drinkable temperature (set to be
320 K) with respect to the time at which cream was inserted in the coffee.

The implications of this plots are consistent with intuition. It would be disadvantageous to insert the
cream prematurely, as the heat flow is dependent on the difference between the temperature of the environ-
ment and the temperature of the system. Adding the cream would lower the temperature of the system,
rendering it less efficient in terms of emitting energy to the environment.

However, it would be equally disadvantageous to stall for too long in adding the cream, as the coffee may

4

simply cool down below the drinkable temperature without the aid of the cream – which would, of course,
take longer than optimal. It is thus evident that the ideal scenario would be to insert the cream – such that
at the precise moment, the coffee would cool down to drinkable temperature as a result thereof.

The natural question, of course, is when that point is. By utilizing the MATLAB function min, which
yields the index of the array at which the minimum value occurs (as its optional secondary return value), it
was found that optimal value is 250 seconds (in resolutions of unit seconds, as the simulation only runs in
seconds intervals).

3 Optimal Cream-Adding Time

The result above may be sufficient, but it is dissatisfying – the resolutions are limited in unit seconds
– of course, this can be amended, but the alterations in the order of precision in the simulation would
correspondingly incur a significant cost in time. Fortunately, I can use fminsearch in this case, with the
starting value at 5 minutes, which is approximately where the plot reaches its trough.1 The resultant
output was 249.6337 seconds, which is definingly close to the simulated value. This therefore legitimizes the
simulation.

1for reminders, the function was run as: disp(fminsearch(@simulate 4, 5.0 ∗ 60)).

5

ModSim Exercise 9

Yoonyoung Cho

November 9 2015

1 Model

The baseball is modelled as a particle, since the rotation is relatively trivial for the purposes of the in-
vestigation; modelling baseball as a rigid body involves more complex mechanics – namely aerodynamics,
Magnus effects, etc. – which are beyond the scope of the question, as the primarily concern of the question
is translational displacement.

2 Interactions

The forces that would act upon the ball are:
Gravity1, ~Fg = −Gm1m2

~r2 r̂

Drag2, ~Fd = −1/2ρCdA~v
2v̂

3 Free Body Diagram

Figure 1: Free body diagram of the baseball.

In the diagram, Fd is Drag, Fg is Gravity, and v is the velocity(notated in grey since it does not contribute
to net force).

4 Mathematical Abstraction

The ball was modeled in a 2D coordinate system, where sideways movement was ignored; in this manner, the
x-axis was aligned parallel to the ground; likewise, the y-axis was normal to the ground. The mathematical

1Primary Factor
2Secondary Factor

1

relationships are as follows:

d~r

dt
= ~v

d~v

dt
=

~F

mb

~F = ~Fg(~r) + ~Fd(~v)

~Fg = −Gmemb

~r2
r̂

~Fd = −1/2ρCdA~v
2v̂

As for initial conditions, at time t = 0, the ball would be some height above the origin (to accurately reflect
baseball scenario), but its x-value would be at the reference(0); the velocity would depend on the occasion.

5 Explanation of Terms

Term Description Value Unit

~r Position of baseball < 0, 5 > m
~v Velocity of baseball < 39, 12 > m/s
G Gravitational Constant 6.67408e− 11 m3kg−1s−2

mb Mass of Baseball .145 kg
me Mass of Earth 5.9742e24 kg
A Cross-sectional area of baseball .004 m2

~Fg Gravity < 0,−1.42 > N
~Fd Drag Force < −0.6,−0.09 > N
ρ Density of Air 1.225 kg/m3

Cd Drag Coefficient of Baseball 0.3 -

Table 1: The terms in the differential equation; Vectors were notated element-wise. Constant values are
taken verbatim; variable values are samples within reasonable range.

2

ModSim Exercise 10

Yoonyoung Cho

November 17 2015

1 Key Frames

Figure 1: Key Frames of the mechanics involving the flight of the baseball; the graph depicts the trajectory
of the baseball. The plot is color-coded based on the launch angle: red, purple, and blue corresponding to
high, middle, and low angles, respectively.

In the key frames, I sought to capture the behavior that the distance covered was dependent on the magnitude
of the initial velocity, as well as the launch angle; too high of a launch angle would expend much of the
momentum in the upwards direction1. Moreover, I exaggerated the rightward skewing of the overall trajectory
in the presence of drag, as a result of dissipation in the horizontal momentum due to drag.

2 Estimation

Based on the research parameters I had identified in the last exercise(replicated in Table 1), I calculated the
initial drag and gravitational force for the starting velocity of 54 m/s

1The graph is, of course, faulty: later, I realized that the the angle couldn’t be too low either, as the ball would fall to the
ground prematurely.

1

Term Description Value Unit

~r Initial Position of baseball < 0, 1 > m
~v Initial Velocity of baseball < 38, 38 > m/s
G Gravitational Constant 6.67408e− 11 m3kg−1s−2

mb Mass of Baseball .145 kg
me Mass of Earth 5.9742e24 kg
A Cross-sectional area of baseball .004 m2

~Fg Gravity < 0,−1.42 > N
~Fd Drag Force < −0.6,−0.09 > N
ρ Density of Air 1.225 kg/m3

Cd Drag Coefficient of Baseball 0.3 -

Table 1: Constants.

The forces that describe the system are:

~F = ~Fg(~r) + ~Fd(~v)

~Fg = −Gmemb

~r2
r̂

~Fd = −1/2ρCdA~v
2v̂

The above interaction was implemented in MATLAB as follows:

1 function res = Gravity(h b)%gets height of ball
2 G = 6.67384e−11; %mˆ3 / kg∗sˆ@ Gravity Constant
3 m e = 5.9742e24; % kg, mass of earth
4 m b = 145e−3; % kg, mass of baseball
5 r e = 6378e3; %m, radius of earth
6 r = h b + r e; % h + r e
7 res = [0 −G∗m e∗m b/rˆ2];
8 end
9

10 function res = Drag(v x,v y)
11 r b = 37e−3; %m, radius of ball
12 rho = 1.225; %kg/mˆ3, density of air
13 C d = 0.3; %drag coefficient of basesball
14 A = pi∗r bˆ2;
15 speed = sqrt(v xˆ2+v yˆ2);
16

17 nv x = v x / speed; %normalize
18 nv y = v y / speed;
19 res = −1/2∗rho∗C d∗A∗speedˆ2∗[nv x nv y];
20 end

which yielded Drag = 2.304455N and Gravity = 1.421198N2. Based on this comparison, it was clear
that Drag force could not be disregarded from the calculation.

3 Basic Implementation

To avoid redundancies, the final code will be presented in the next section. Here, only the results of the
basic implemention – without the later added constraints – will be shown:

2since it is known that the height of the ball does not influence the magnitude of gravity very much, I simply chose 0 as the
height in the above code.

2

x (m)

0 50 100 150 200 250 300 350

y
 (

m
)

-140

-120

-100

-80

-60

-40

-20

0

20

40

60
Drag : X, v=35

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(a) 35m/s without Drag

x (m)

0 50 100 150 200 250 300 350 400

y
 (

m
)

-120

-100

-80

-60

-40

-20

0

20

40

60

80
Drag : X, v=45

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(b) 45m/s without Drag

x (m)

0 50 100 150 200 250 300 350 400 450 500

y
 (

m
)

-150

-100

-50

0

50

100

150
Drag : X, v=55

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(c) 55m/s without Drag

x (m)

0 20 40 60 80 100 120 140 160 180

y
 (

m
)

-120

-100

-80

-60

-40

-20

0

20

40
Drag : O, v=35

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(d) 35m/s with Drag

x (m)

0 20 40 60 80 100 120 140 160 180 200

y
 (

m
)

-120

-100

-80

-60

-40

-20

0

20

40

60
Drag : O, v=45

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(e) 45m/s with Drag

x (m)

0 50 100 150 200 250

y
 (

m
)

-120

-100

-80

-60

-40

-20

0

20

40

60

80
Drag : O, v=55

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(f) 55m/s with Drag

Figure 2: Matlab-generated keyframes

It can be seen that without the constraints that limit the ball above the ground (quite naturally) the
ball goes farthest when shot in a lower angle, in a more horizontal orientation. As this does not accurately
reflect what happens – and we are not currently equipped with the capacity to model the bouncing of the
ball, a restriction will be enforced that limits the ball’s location to above the ground, which leads to the next
section:

4 Event Detection

The MATLAB implementation of the simulation is as follows:

1 function res = simulateBaseball(speed,angle,useDrag,plotRes)
2 r x =0;
3 r y =1;%initial positions, m
4

5 v x =speed∗cos(angle);
6 v y =speed∗sin(angle);%initial velocity, m/s
7

8 y = [r x r y v x v y];
9 y = y’;

10 opt = odeset(’Events’,@hitGround); %When it hits ground (r y <=0)
11 netAccelDrag = @(t,y) netAccel(t,y,useDrag);
12 [t,Y] = ode45(netAccelDrag, [0 10],y, opt);
13

14 %PART 3
15 if(plotRes)
16 plot(Y(:,1),Y(:,2));
17 xlabel(’x (m)’);
18 ylabel(’y (m)’);
19 end

3

20 res raw = Y(:,2);
21 res = res raw(end);
22 end
23 function res = netAccel(˜,y,useDrag)
24 m b = 145e−3; % kg, mass of baseball
25

26 dv = netForce(y,useDrag)/m b;
27 res(1) = y(3); %dx
28 res(2) = y(4); %dy
29 res(3) = dv(1); %dvx
30 res(4) = dv(2); %dvy
31 res = res’;
32 end
33

34 function res = netForce(y,useDrag) %returns [f x f y]
35 r x = y(1);
36 r y = y(2);
37 v x = y(3);
38 v y = y(4);
39 if(useDrag)
40 res = Gravity(r y) + Drag(v x,v y);
41 else
42 res = Gravity(r y);
43 end
44 if(r y <= 0)
45 res(2) = 0; %downward force = 0
46 end
47

48 end
49

50 function res = Gravity(h b)%gets height of ball
51 G = 6.67384e−11; %mˆ3 / kg∗sˆ@ Gravity Constant
52 m e = 5.9742e24; % kg, mass of earth
53 m b = 145e−3; % kg, mass of baseball
54 r e = 6378e3; %m, radius of earth
55 r = h b + r e; % h + r e
56 res = [0 −G∗m e∗m b/rˆ2];
57 end
58

59 function res = Drag(v x,v y)%force acting against velocity
60 r b = 37e−3; %m, radius of ball
61 rho = 1.225; %kg/mˆ3, density of air
62 C d = 0.3; %drag coefficient of basesball
63 A = pi∗r bˆ2;
64 speed = sqrt(v xˆ2+v yˆ2);
65

66 nv x = v x / speed; %normalize
67 nv y = v y / speed;
68 res = −1/2∗rho∗C d∗A∗speedˆ2∗[nv x nv y];
69 end
70

71 function [val,term,dir] = hitGround(t,y) %Event Condition to stop
72 %named hitground but also accomodates hitting the wall
73 val(1) = y(2); %y(2) = r y = height

4

74 term(1) = 0;
75 dir(1) = 0;
76

77 val(2) = y(1) − 97; %second event : hit wall
78 term(2) = 0;
79 dir(2) = 0;
80 end

The function takes initial speed and angle as a parameter, as well as flags such as a whether or not to
incorportate drag force into the system, and whether or not to plot the result.

and the resultant plot:

x (m)

0 10 20 30 40 50 60 70 80 90 100

y
 (

m
)

0

5

10

15

20

25

30

35

40

45

50
Drag : X, v=35

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(a) 35m/s without Drag

x (m)

0 10 20 30 40 50 60 70 80 90 100

y
 (

m
)

0

10

20

30

40

50

60

70

80
Drag : X, v=45

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(b) 45m/s without Drag

x (m)

0 10 20 30 40 50 60 70 80 90 100

y
 (

m
)

0

20

40

60

80

100

120
Drag : X, v=55

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(c) 55m/s without Drag

x (m)

0 10 20 30 40 50 60 70 80 90

y
 (

m
)

0

5

10

15

20

25

30

35

40
Drag : O, v=35

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(d) 35m/s with Drag

x (m)

0 10 20 30 40 50 60 70 80 90 100

y
 (

m
)

0

10

20

30

40

50

60
Drag : O, v=45

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(e) 45m/s with Drag

x (m)

0 10 20 30 40 50 60 70 80 90 100

y
 (

m
)

0

10

20

30

40

50

60

70

80
Drag : O, v=55

theta=30.0 (deg)

theta=45.0 (deg)

theta=60.0 (deg)

(f) 55m/s with Drag

Figure 3: Matlab-generated keyframes, with events.

It is seen that, with enforced constraints, an angle neither too high nor too low performs best, as it has
enough time in air to travel, as well enough horizontal velocity to travel far; there is evidence of the rightward
skewing – as well as greatly reduced distance – in the presence of the drag force, though a bit more subtle
than that hand-drawn in the keyframes.

v (m/s)
θ(deg)

30 45 60

35 0 0 0
45 10.93 24.45 1.89
55 25.94 47.80 52.76

Table 2: Final Height of the ball based on the initial launch state.

5

5 Range-based Analysis

angle (deg)

10 20 30 40 50 60 70 80 90

v
e

lo
c
it
y
 (

m
/s

)

10

20

30

40

50

60

70

80
Velocity and Angle for Home-Runs

0

20

40

60

80

100

Figure 4: The final height of the ball, given velocity and angle as initial states.

From the graph, it is apparent that the minimum velocity to clear the green monster is around 40m/s, at
approximately 40 degrees above the horizontal.

6

ModSim Exercise 11

Yoonyoung Cho

December 1 2015

1 Gravity

~r = ~p1 − ~p2

~Fg = −Gmemb

~r2
r̂

With the above relation, the implementation is trivial:

1 function res = Gravity(m1,p1,m2,p2)%corresponds to gravity force func
2 r = (p1−p2); %direction : from p2 to p1
3 G = 6.67384e−11; %mˆ3 / kg∗sˆ@ Gravity Constant
4 f g = G∗m1∗m2/norm(r)ˆ2; %magnitude
5 res = f g∗r/norm(r); %force vector
6 end

2 Orbital Simulation

1 function [t,y] = simulateOrbit()
2 %position of the Sun is taken as origin
3 p s = [0 0 0]; %m
4 %778e9 = distance from the Sun to Jupiter
5 p j = [0 778e9 0]; %m
6 y0 = packParams(p s’,[0 0 0]’, p j’, [13.06e3 0 0]’);
7 [t,y] = ode45(@orbitFlow,0:86400:86400∗4332,y0);
8

9 [˜,˜,p j,˜] = unpackParams(y(end,:));
10 %Verification
11 disp(p j); %position of Jupiter after 4332 days
12 theta = atan2(y(:,8),y(:,7)); %angle
13 figure;
14 plot(t,theta);
15 hold on;
16 line(xlim,[theta(end) theta(end)],’Color’,’r’);
17 xlabel(’time (sec)’);
18 ylabel(’angle (rad)’);
19 title(’Orbital Angle of Jupiter’);
20

21 figure;
22 if(nargout == 0)
23 %comet(y(:,7),y(:,8));
24 myComet(t,y(:,1),y(:,2),y(:,7),y(:,8));

1

25 end
26 end
27

28 function res = packParams(p s,v s,p j,v j)
29 %format into column vector
30 res = [p s v s p j v j];
31 res = reshape(res,12,1);
32 end
33

34 function [p s,v s,p j,v j] = unpackParams(y)
35 %reassign column vector to 4 vectors
36 y = reshape(y,3,4);
37 p s = y(:,1);
38 v s = y(:,2);
39 p j = y(:,3);
40 v j = y(:,4);
41 end
42

43 function res = orbitFlow(t, y)
44 [p s,v s,p j,v j] = unpackParams(y);
45 %p s = Sun Position, m
46 %v s = Sun Velocity, m/s
47 %p j = Jupiter Position, m
48 %v j = Jupiter Velocity, m/s
49 m s = 2.0e30; %Sun Mass, kg
50 m j = 1.89e27;%Jupiter Mass, kg
51 f g = Gravity(m s,p s,m j,p j); %dir = J−>S
52 dv s = −f g/m s;%opposite pull
53 dv j = f g/m j;
54 dp s = v s;
55 dp j = v j;
56 res = packParams(dp s,dv s,dp j,dv j);
57 end

According to the simulation, the position of Jupiter after 4332 days was found to be ~pj =< 8.64e10, 7.70e11, 0 >;
here, the discrepancy in the x value, which indicates the position of Jupiter went slightly over the beginning
point, can be attributed to the assumption that the orbit of Jupiter is perfectly circular, in which case the
mean velocity of Jupiter may not have been the harmonic value for the circular orbit.

2

time (sec) ×108

0 0.5 1 1.5 2 2.5 3 3.5 4

a
n

g
le

 (
ra

d
)

-4

-3

-2

-1

0

1

2

3

4
Orbital Angle of Jupiter

Figure 1: The Angle of Jupiter. The Sudden jump in the middle is the transition from −π to π, which are
equivalent.

Again, it is apparent that, in the course of 4332 days, Jupiter completes a cycle and exceeds the beginning
angle by a bit.

3 Animation

1 function myComet(t,x s,y s,x j,y j)
2 % t = real orbit time(in sec)
3 hold on;
4 %scale duration to .001 sec/day
5 duration = (max(t)−min(t)) / 86400 / 1000; %sec
6 fps = 40; %frame/sec
7 stepSize = floor(length(x j)/(duration∗fps));
8 minmax = [min(x j),max(x j),min(y j),max(y j)]; %frame dimensions
9 for i=1:stepSize:length(x j) % # frames

10 pause(1/fps);
11 axis(minmax);
12 plot(x j(i),y j(i),’r.’,’MarkerSize’,20);
13 plot(x s(i),y s(i),’y.’,’MarkerSize’,50);
14 drawnow;
15 end
16 xlabel(’x (m)’);
17 ylabel(’y (m)’);
18 title(’Orbit of Jupiter Around the Sun’);

3

19 end

Here, the pause duration was chosen such that the duration of the animation would be scaled to .001sec/day:

dur = time/1000/(60 ∗ 60 ∗ 24)

step =
length(xj)

dur ∗ fps

numFrame =
length(xj)

step

t =
1

fps
∗ numFrame

=
1

fps
∗ length(xj)

length(xj)
dur∗fps

=
1

fps
∗ dur ∗ fps

= dur

A frame from the resultant animation is as follows:

x (m) ×1011

-6 -4 -2 0 2 4 6

y
 (

m
)

×1011

-6

-4

-2

0

2

4

6

Orbit of Jupiter Around the Sun

Figure 2: The orbit of Jupiter around the sun, after a cycle.

4

