
ISIM Lab #1 - Pendulum 

Jamie Cho 

1. Figures 

 

 



 



 

2. Flowchart 

 

 

3. MATLAB Command Line & Period Value 

>> Calibration() 

>>  plot(Times+30,aByV(C1V)); %Pendulum Timelapse Graph 

>> get_Period() 

Period is 0.963 seconds(Peaks), 1.002 seconds(Troughs) 

 Ave. to 0.982 seconds 

 

4. MATLAB Scripts 

Calibration.m 
%precondition : Cal_Voltage & Cal_Angle are imported Data 

  
c_fit = polyfit(Cal_Voltage, Cal_Angle, 1);  
plot(Cal_Voltage, Cal_Angle); 



 hold on 
aByV = @(x)x*c_fit(1) + c_fit(2); %Angle By Voltage 

ezplot(aByV, Cal_Voltage); 
legend('Measured','Calibration'); 
title('Calibration Curve') 
xlabel('Voltage (V)'); 
ylabel('Angle (deg)'); 

 

get_Period.m 
%precondition : C1V is the raw Voltage, Times range in -30:30 

%p = Peak, t = Trough 
 [p,t] = find_Period(aByV(C1V),Times+30); 

 
flag = true; 

  
while(flag) %rectification feedback loop 
    flag = false; 
    scale_p = [1:length(p)]; 
    scale_t = [1:length(t)]; 

  
    p_fit = polyfit(scale_p,p,1); 
    t_fit = polyfit(scale_t,t,1); 

 
    i = 2; 
    while(i < length(p)) 
        if( p(i+1) - p(i-1) < p_fit(1)*5/4) %in discord with other data 
            p(i) = []; 
            flag = true; %indicates change  
        else 
            i = i+1; 
        end 
    end 

     
    i = 2; %repeat same process with troughs 
    while(i < length(t)) 
        if( t(i+1) - t(i-1) < t_fit(1)*5/4) 
           t(i) = []; 
           flag = true; 
        else 
            i = i+1; 
        end 
    end 

     
end %ends when nothing is out of place 

 

 
plot(scale_p,p,'o'); 
hold on 
plot(scale_t,t,'o'); %raw periods 

 
fit_func_p = @(x) x*p_fit(1) + p_fit(2); 
ezplot(fit_func_p,scale_p); 

  
fit_func_t = @(x) x*t_fit(1) + t_fit(2); 



ezplot(fit_func_t,scale_t); %polynomials from period data 

  
p_label = sprintf('fit-Peak @ %.3f sec / P', p_fit(1)); 
t_label = sprintf('fit-Trough @ %.3f sec/ T', t_fit(1)); 

  
l = legend('Peak','Trough',p_label,t_label, 'Location','SouthEast'); 
title('Period Best-fit Graph'); 
xlabel('Occurrence'); 
ylabel('Time (sec)'); 

  
msg = sprintf('period is %.3f seconds(Peaks), %.3f seconds(Troughs)\n Ave. 

to %.3f seconds', p_fit(1), t_fit(1), (p_fit(1)+t_fit(1))/2); 
disp(msg); 

 

find_Period.m 
function [p,t] = find_Period(dat,Time) 
p = find_Peaks(dat,Time); 
t = find_Troughs(dat,Time); 
end 

  
function ret = find_Peaks(dat, time) 
r = 20; %range +-. at the sampling rate of 60/7260 (~0.008) seconds/sample, 

this amounts to +- 0.165 seconds. 
ret = []; 
len = length(dat); 
prevval = 0; 
    for val = 1+r:len-r 
        if(abs(prevval -dat(val)) < 0.2) %ignore plateaus at top, leeway of 

0.2 degrees difference. 
            continue; 
        else 
            prevval = dat(val); 
        end 
        if(isLocalMax(dat(val), dat(val-r:val+r))) % = if Peak 
            ret(end+1) = time(val); %append new Peak 
            prevval = dat(val); 
        else 
            %disp(val); 
        end 
    end 
end 

  
function ret = find_Troughs(dat, time) %ditto 
r = 20;  
ret = []; 
len = length(dat); 
prevval = 0; 
    for val = 1+r:len-r 
        if(abs(prevval -dat(val)) < 0.2) 
            continue; 
        else 
            prevval = dat(val); 
        end 
        if(isLocalMin(dat(val), dat(val-r:val+r))) % = if Trough 
            ret(end+1) = time(val); %append new Trough 



            prevval = dat(val); 
        else 
            %disp(val); 
        end 
    end 
end 

  

  
function ret = isLocalMax(val, arr) 
    ret = true; 
    for dat = arr' 
       if(dat > val) 
           ret = false; 
           break; 
       end 
    end 

     
    if(arr(1) == val || arr(end) == val) 
        ret = false; 
    end 

     
end 
function ret = isLocalMin(val, arr) 
    ret = true; 
    for dat = arr' 
       if(dat < val) 
           ret = false; 
           break; 
       end 
    end 

     
    if(arr(1) == val || arr(end) == val) 
        ret = false; 
    end 

     
end 

 

 



ISIM Lab 2 – Strain Gauge 

Jamie Cho 

 

1)  

The equation derived from the above circuit is: 

∆𝑉𝑎𝑚𝑝 = (1 +
100000

𝑅𝑔𝑎𝑖𝑛
) ∗ ((5 −

5

121 + 121
∗ 121) − (5 −  

5 ∗ 𝑅𝑠𝑡𝑟𝑎𝑖𝑛

121 +  𝑅𝑠𝑡𝑟𝑎𝑖𝑛
)) 

Notice that for the parallel resistors, Rstrain ought to be calculated beforehand. 

Equivalently, solving this for Rstrain,: 

𝑅𝑠𝑡𝑟𝑎𝑖𝑛 =  − 
121 ∗ (𝑅𝑔𝑎𝑖𝑛 ∗ (2 ∗ 𝑉 + 5) + 500000)

𝑅𝑔𝑎𝑖𝑛 ∗ (2 ∗ 𝑉 − 5) − 500000
 

The following MATLAB script is the implementation of the first equation. It also reveals the 

derivation of the first formula step-by-step: 

function V = V_amp(R_strain, R_gain) 
% Independent Variables 

  
Gain = 1 + 100000/R_gain; 
I_left = 5/(121 + 121); 
I_right = 5/(121+ R_strain); 

Figure 1. The diagram of the Strain Gauge circuit, which will be referred to extensively in 
this document. For simplicity of representation, potentiometers and the strain gauge setup 
were removed; more specific diagram is already detailed in the lab handout. R_s is Rstrain. 



V_left = 5 - I_left*121; 
V_right = 5 - I_right * R_strain; 
V_raw = V_left - V_right; 
V = V_raw * Gain; 

  
end 

 

Running the following command line: 

R_eq = @(R1,R2) 1/(1/R1 + 1/R2); 

R_strain = R_eq(121,100*1000); 

R_gain = 4990; 

disp (V_amp(R_strain,R_gain)); 

displays -0.0318, which is consistent with measured value (-36 mV = -0.36V ≈ -.0318 V) 

The following chart depicts the data obtained from repeated iterations: 

Resistance(Ω) Theoretical (V) Experimental (V) Discrepancy (%) 

100 K -0.0318 -.036 -13.2% 

499 K -0.0064 -.008 -25% 

1 M -0.0032 -.004 -25% 

 

To account for the (relatively big) discrepancy, it is important to note that – as indicated 

above – I used a 4.99KΩ resistor for the amplifier, which undermined the resolution of the 

measure; 200Ω resistor consistently failed to perform as anticipated on my circuit, outputting in 

the range of 2.36V regardless of change in Rstrain. Baffled by the results, I consulted my peers, 

one of whom – Eric Miller – attributed this phenomenon to the limitation in the Analog 

Discovery’s capacity of measurement. The input voltage was simply too big to display a 

meaningful value. At his advice, I changed the resistor from 200Ω resistor to 4.99KΩ resistor, 

after which the experimental data was coherent with the theoretical data. 

That is, though the discrepancy may seem large, it is significantly similar to the 

theoretical value, especially considering that even a delicate change – in this experiment – brings 

about great ramifications. After the extensive verification, the results may now be applied in the 

following section. 

 

 

 

 

 

 



2)  

 

Figure 2. Amplified Voltage Time Series; it is unclear from the figure, but the initial jump was from 0.05237 to 2.377 Volts, later 
settling at 0.4924 Volts. 

 In order to measure the minute change in the strain gauge, the 4.99KΩ resistor was 

supplanted with 200Ω resistor. For this scenario, the difference in resistance incurred by the 

strain gauge was sufficiently small for the Analog Discovery to accommodate. However, the 

trend as visible from the plot implies that the first peak measure still may have been inaccurate 

(i.e. capped out) due to the limitations of the instrument. Fortunately, the experiment was not 

concerned with the immediate strain caused by the impact; the difference in voltage due to the 

appliance of weight can be calculated by the juxtaposing the equilibrium value taken from the 

time at which the weight settled (.4924 V) to the initial value (0.05237 V): this yields the value 

of 0.44 volts. 

 To figure out the change in resistance incurred by the strain gauge, the second equation 

was applied as follows: 

>> S = @(G,V) -121*(G*(2*V+5)+500000) / (G * (2*V-5) - 500000); 

disp(S(200,.44)); 

  121.0850 

Here, S is Rstrain, G is Rgain, and V is the measured voltage difference. 

Subtracting the theoretical data of 121Ω from the value, we now obtain .0850Ω as the additional 

resistance supplied by the strain gauge. 

 

3)  

 

The smallest voltage resolution obtainable from this circuit is – at least, by the Analog 

Discovery – 2 mV, or 0.002 V. Retaining the Rgain of 100Ω, the smallest resistance change can 

be found by applying the same equation: 



 
>> S = @(G,V) -121*(G*(2*V+5)+500000) / (G * (2*V-5) - 500000); 

disp(S(200,.002)); 
121.0004 

 

It is thus seen that the smallest detectible resistance change is .0004Ω. 

 

4)  



Lab 3. Strain Gauge Part II 

Jamie Cho 

 In order to legitimize the theoretical model of the RC circuit, experimental and theoretical 

data were plotted against each other: 

 

Figure 1. The graph of input, output, and theoretical voltage over 1 millisecond; although not apparent in the graph, Vin is 
tangent to the y axis at x=0. 

As depicted above, the theoretical Voltage calculated from V = e−t/(RC) is a close 

approximation to the experimental value, with rather trivial deviation. This graph was 

implemented as follows: 

t = linspace(0,.001); 
R = 1000; %Ohms 
C = 0.1 / 1000 / 1000; %farads 
V_theo = exp(-t/R/C); 
plot(t,V_theo); 

It is thus verified that the output voltage, through the capacitor, adheres to the input 

voltage logarithmically: a result consistent with the anticipation. 

Next, the resultant current was calculated from the respective values according to the 

relation I =  ∆V/R, where ∆V = Vin – Vout (experimental), or -Vt  (theoretical). Alternatively, for 

the theoretical model, solving I = C ∗
dV

dt
 yields an equivalent relationship, although the same 



technique cannot be applied to experimentally obtained data. The resultant plot is shown below:

 

Figure 2. The current calculated from the voltage data obtained in the previous section. 

The two plots are nearly overlapping, which clearly illustrates that the theoretical model 

accurately describes the relationship. The following is its implementation, with variable values 

consistent with the aforementioned script. 

I_e = (V_in - V_out)/ R; 
I_t = -V_theo/R; 

  
figure; 
hold on; 
plot(time,I_e); 
plot(t, I_t); 

 



Now, to further emphasize the relationship between frequency, voltage and amplitude, the two 

graphs at 500Hz and 1.5kHz were plotted on the same scale applied to each axes:

 

 



It is clear that the response of the output voltage at higher frequency – 1.5kHz – cannot 

quite reach the full amplitude, which is coherent with the model: the delay incurred upon the 

capacitor renders it unable to get fully charged. 

The characteristic frequency of the circuit is 1/(𝑅 ∗ 𝐶 ∗ 2 ∗ 𝜋) to convert from radians, 

which yields 1592 Hz. As the circuit is built in a low-pass filter scheme, 1500 Hz is under the 

cutoff frequency; therefore, its amplitude is relatively preserved from corruption, although its 

proximity to the cutoff frequency – and the imperfection of the filter – renders it not quite able to 

reach full amplitude.  

 

This figure illustrates the steepening of the curve after the cutoff frequency, albeit with 

deviations and shortage in the measurements to the lower and higher registers: to elaborate, it can 

be seen that the graph begins to fall around the 1.6 kHz region, which is approximately the cutoff 

frequency. 

 



 

The same pattern seen from the square-wave measurements reappear, though with much 

greater smoothing in the fluctuation of the curve. Because the curve is a diminishing sinusoidal 

wave with variant frequencies and amplitudes with respect to time, no quantitative conclusion 

can quite be drawn from the plot; the tendency of the capacitor to remain level to the rapid 

fluctuations persist, however, and provide insight that the circuit is still true to the principles we 



had hereto explored. 

 

 

The best fit line was 4.06 𝑚𝑉
𝑔⁄ ∗ weight +  22.9729 mV , which indicates that the 

calibration value for mass at 0 grams is 22.9729 mV. Generally, the relationship is clearly 

defined as linear, and 4.06 mV will be administered per every gram. Since the Analog Discovery 

documentation states the device can measure down to 300 µV, this translates to .07 grams in 

terms of the smallest measurable gram value. 



ISim Lab4: EKG

Yoonyoung Cho

October 1 2015

1 RC Filters

1.1 High-Pass Filter

Figure 1: Circuit Diagram of a high-pass filter.

In a High-Pass Filter, the relationship between Frequency, Amplification, and Phase can be derived as follows:

Vin = V sin(ωt) (1)

Vout = AV sin(ωt+ φ) (2)

C
d(Vout − Vin)

dt
=

0 − Vout
R

= I (3)

This expands to:

C
d(AV sin(ωt+ φ) − V sin(ωt))

dt
= −AV sin(ωt+ φ)

R
−RC(AV ωcos(ωt+ φ) − V ωcos(ωt)) = AV sin(ωt+ φ)

−RC(Aωcos(ωt+ φ) − ωcos(ωt)) = Asin(ωt+ φ)

Applying the trigonometric identities,

−RC(Aω(cos(ωt)cos(φ) − sin(ωt)sin(φ)) − ωcos(ωt)) = A(sin(ωt)cos(φ) + cos(ωt)sin(φ)

As this equation must be true at all times, the terms with sin(ωt) and cos(ωt) must equate separately.
Therefore,

RCAω(sin(ωt)sin(φ)) = Asin(ωt)cos(φ) (4)

−RCAω(cos(ωt)cos(φ)) +RCωcos(ωt)) = Acos(ωt)sin(φ) (5)

1



equation (4) is now further simplified to yield the phase φ:

RCAω(sin(ωt)sin(φ)) = Asin(ωt)cos(φ)

RCωsin(φ) = cos(φ)

cot(φ) = RCω

φ = acot(RCω) (6)

and equation (5) yields Amplification in terms of ω and φ.

−RCAω(cos(ωt)cos(φ)) +RCωcos(ωt)) = Acos(ωt)sin(φ)

−RCAωcos(φ) +RCω = Asin(φ)

A(sin(φ) +RCωcos(φ)) = RCω

A =
RCω

sin(φ) +RCωcos(φ)
(7)

As it is possible to sequentially solve for phase and amplification in MATLAB, there was no need to
substitute φ and solve for the amplification expression. The resultant Bode plot for R = 1000 Ω, C = 0.1 µF
is shown below:
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Figure 2: The Bode Plot for high-pass filter; the frequency ranges from 10Hz to 100kHz, and the blue line
denotes the critical frequency, at 1592 Hz.

As shown, experimental and theoretical data are primarily consistent; the minor discrepancy in amplifi-
cation and phase can be attributed to imperfections in the capacitor.
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1.2 Low-Pass Filter

Figure 3: Circuit Diagram of a low-pass filter.

In a Low-Pass Filter, the relationship between Frequency, Amplification, and Phase can be derived as follows:

Vin = V sin(ωt) (8)

Vout = AV sin(ωt+ φ) (9)

C
d(0 − Vout)

dt
=
Vout − Vin

R
= I (10)

This expands to:

−C dVout
dt

=
Vout − Vin

R

−RC d(AV sin(ωt+ φ))

dt
= AV sin(ωt+ φ) − V sin(ωt)

−RCAV ωcos(ωt+ φ) = AV sin(ωt+ φ) − V sin(ωt)

−RCAωcos(ωt+ φ) = Asin(ωt+ φ) − sin(ωt)

Applying the trigonometric identities,

−RCAω(cos(ωt)cos(φ) − sin(ωt)sin(φ)) = A(sin(ωt)cos(φ) + cos(ωt)sin(φ)) − sin(ωt)

As this equation must be true at all times, the terms with sin(ωt) and cos(ωt) must equate separately.
Therefore,

−RCAω(cos(ωt)cos(φ)) = Acos(ωt)sin(φ) (11)

RCAω(sin(ωt)sin(φ)) = Asin(ωt)cos(φ) − sin(ωt) (12)

equation (11) is now further simplified to yield the phase φ:

−RCAω(cos(ωt)cos(φ)) = Acos(ωt)sin(φ)

−RCωcos(φ) = sin(φ)

−RCω =
sin(φ)

cos(φ)

tan(φ) = −RCω

φ = atan(−RCω) (13)

3



and equation (12) yields Amplification in terms of ω and φ.

RCAω(sin(ωt)sin(φ)) = Asin(ωt)cos(φ) − sin(ωt)

RCAωsin(φ) = Acos(φ) − 1

A(RCωsin(φ) − cos(φ)) = 1

A = 1/(RCωsin(φ) − cos(φ)) (14)

The resultant Bode plot for R = 1000 Ω, C = 0.1 µF is shown below:
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Figure 4: The Bode Plot for low-pass filter; the frequency ranges from 10Hz to 100kHz, and the blue line
denotes the critical frequency, at 1592 Hz.

Such consistent coherence in the theoretical and experimental plots serve as sufficient verification of the
theoretical model. The calculated cutoff frequency for both circuits was (since resistance and capacitance
were held the same) 1

1000Ω∗0.1 µF∗2π = 1592Hz, which is consistent to both of the plots.
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1.3 Both Filters Applied

Figure 5: Circuit Diagram of two low-pass filters followed by a high-pass filter.

As for this scenario, in which multiple filters were applied to the source voltage consecutively, amplification
was multiplied and phase was added per each filter, which is a natural assumption given the type of trans-
formations they undergo in filtration. The resultant Bode plot which adheres to the above diagram is shown
below:
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Figure 6: The Bode Plot for a combination of two low-pass filters and one high-pass filter, the frequency
ranges from 10Hz to 100kHz. The blue line denotes the critical frequency, at 31.82Hz and 1592 Hz.

The irregularities shown an the end of the experimental plot are due to the confusion between 180◦ and
-180◦, as well as the inability for the analog discovery to measure in such fine resolutions.
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2 The EKG
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Figure 7: EKG Diagram

Figure 8: Circuit Picture
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ISim Lab 5: Op Amps

Yoonyoung Cho

October 7 2015

1 Op Amp as Buffer

Figure 1: Simplified Circuit Diagram; Analog Discovery is
represented as a resistor with resistance Ra.

Given:

R1 = R

R2 =
1

1
R + 1

Ra

I1 = V1/R1

I2 = V2/R2

I1 = I2

Yields

R2 =
V2R

V1
=

1
1
R + 1

Ra

V2R

V1
=

Ra ∗R
Ra +R

V2

V1
=

Ra

Ra +R

Ra =
R ∗ V2

V1 − V2

Thus the impedence of the Analog Discovery is 1MΩ∗1.73V
3.27V−1.73V = 1.06MΩ.

1



Accordingly, the theoretical measured Voltage with 499KΩ Resistors is:

R

Ra
=
V1 − V2

V2

=
5 − 2 ∗ V2

V2

R ∗ V2 = Ra(5 − 2 ∗ V2)

(R+ 2 ∗Ra)V2 = 5Ra

V2 =
5Ra

R+ 2Ra

So V2 = 5V ∗1.06MΩ
.499MΩ+2∗1.06MΩ = 2.02V .

Table 1: Voltage measurement through experiment

Resistance Op Amp Voltage

1 MΩ X 1.73 V
499 KΩ X 2.04 V
499 KΩ O 2.51 V

As shown, the experimental value of 2.04V, when compared to the theoretical value of 2.02V, yields a %
discrepancy of -0.99%. Meanwhile, the same circuit with the Op Amp demonstrated much closer proximity
to the anticipated value (2.51 V), which evidences its capacity as a buffer. In the past labs, the value of R
was small enough such that the value of R2 approximated closely to R; in this experiment, we adopted a
1MΩ resistor, which is on the same order of magnitude as the impedence of the Analog Discovery; hence,
the voltage drop through the Analog Discovery was noticeably significant.

2 Inverting Amplifier

Assuming that no current goes through the Op Amp, the circuit is equivalent to the following diagram:

Figure 2: Simplified Circuit Diagram. When Vout is not at its extremes, Vmid is 2.5V when Vpos = Vneg; in
reference to 2.5V, thus, it will be considered zero.

Since the circuit is congruent to that of a voltage-divider, it can be easily deduced that when Vmid is
equivalent to Vmid−Vin

1KΩ = Vout−Vmid

10KΩ , and since Vmid = 0,

Vout = −10Vin

The output voltage will thus be amplified by 10. The below figure illustrates this relationship:

2
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Figure 3: The relationship between input and output voltage through the inverting amplifier.

The theoretical line was generated simply by setting Vout = −10Vin; as seen, the slope of the line (where
Vout is not limited by the rails) coheres closely to -10; in other places, the value is fixed at the rails.
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3 Op Amp Filter

3.1 Approach with Resistance and Capacitance

Figure 4: The circuit diagram of the Op-Amp Filter, which will be extensively referred to in the following
section.

Since the voltage across the capacitor and the second resistor should be the same and the addition of the
two currents, the relationship can be sumamrized as follows:

I = i1 + i2 (1)

I =
Vmid − Vin

R1
(2)

i1 =
Vout − Vmid

R2
(3)

i2 = C
d(Vout − Vmid)

dt
(4)

Now, although Vin is actually 2.5+0.1sin(ωt), taking the voltage in reference to Vpos, Vin can be represented
as 0.1sin(ωt). Accordingly, Vmid is also 0 if Vout != −2.5V and Vout != 2.5V 1, in which case it is stuck at
the ’rails’ and the assumption that Vpos == Vneg no longer holds true. Furthermore, Vout will be modeled

1The maximum/minimum values of the Op-Amp, not represented in the diagram for simplification.
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as A ∗ 0.1 ∗ sin(ωt+ φ); the objective is to identify Amplitude(A) and Phase(φ).

Vmid − Vin
R1

=
Vout − Vmid

R2
+ C

d(Vout − Vmid)

dt

0 − 0.1sin(ωt)

R1
=

0.1Asin(ωt+ φ) − 0

R2
+ C

d(0.1Asin(ωt+ φ) − 0)

dt

−0.1sin(ωt)

R1
=

0.1Asin(ωt+ φ)

R2
+ C

d(0.1Asin(ωt+ φ))

dt

−sin(ωt)

R1
=
Asin(ωt+ φ)

R2
+ C

d(Asin(ωt+ φ))

dt

−sin(ωt)

R1
=
Asin(ωt+ φ)

R2
+ CAωcos(ωt+ φ)

now, invoking trigonometric identities,

−sin(ωt)

R1
=

A

R2
∗ (sin(ωt)cos(φ) + cos(ωt)sin(φ)) + CAω(cos(ωt)cos(φ) − sin(ωt)sin(φ))

For this equation to be true at all times, sin(ωt) and cos(ωt) terms must balance separately:

0 =
A

R2
cos(ωt)sin(φ) + CAωcos(ωt)cos(φ) (5)

−sin(ωt)

R1
=

A

R2
∗ sin(ωt)cos(φ) − CAωsin(ωt)sin(φ) (6)

in order to obtain φ, equation (5) simplifies to:

0 =
A

R2
cos(ωt)sin(φ) + CAωcos(ωt)cos(φ)

0 =
sin(φ)

R2
+ Cωcos(φ)

−Cωcos(φ) =
sin(φ)

R2

−R2Cω =
sin(φ)

cos(φ)

thus,
φ = atan(−R2Cω) (7)

in order to obtain Amplitude, equation (6) simplifies to:

−sin(ωt)

R1
=

A

R2
∗ sin(ωt)cos(φ) − CAωsin(ωt)sin(φ)

− 1

R1
=

A

R2
∗ cos(φ) − CAωsin(φ)

− 1

R1
= A ∗ (

1

R2
∗ cos(φ) − Cωsin(φ))

thus,

A =
1

R1 ∗ (Cωsin(φ) − 1
R2

∗ cos(φ))
(8)
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3.2 Approach with Impedence

Alternatively, this circuit could be solved by using the concept of impedence, simply replacing resistors and
capacitors with an equivalent ”impedor”:

Figure 5: Caption

this circuit yields the following relationship:

Vmid − Vin
Z1

=
Vout − Vmid

1
1

Z2
+ 1

Z3

0 − Vin
Z1

=
Vout − 0

1
1

Z2
+ 1

Z3

Vin
Z1

=
Vout

1
Z2+Z3
Z2Z3

Vin
Z1

= Vout
Z2 + Z3

Z2Z3

Vout
Vin

=
Z2Z3

Z1(Z2 + Z3)

Since Z1 = 1 kΩ, Z2 = 1/jωC, where C = 0.01 µF and Z3 = 1 kΩ,

Vout
Vin

=
1/(jω ∗ 0.01 µF) ∗ 1 kΩ

1 kΩ ∗ (1/(jω ∗ 0.01 µF) + 1 kΩ)
(9)

This yields a direct relationship of Amplitude and Phase to the frequency of Vin; the resultant Bode plot is
shown below.
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Figure 6: The Bode Plot of the circuit;paranthesized R & C indicates that the calculation was conducted
by an analysis of resistance and capacitance; Z, on the other hand, indicates that the calculation was done
with impedence. As seen, the two theoretical calculations exactly overlap.

while the results do not exactly match up, the two theoretical calculations are congruent; therefore,
it is unlikely that the calculation themselves are both wrong. I would attribute the discrepancy between
the two results (although they are indeed quite similar) to the limitations in the precision of devices, such
as capacitors, as well as the ability of the analog discovery to pick up signals at high frequencies, as the
discrepancy was more readily apparent in the higher frequency range.
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4 Light Measurement
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Figure 7: The troughs in the plot occurred when I waved my hand over the photodiode, which makes sense
since it lost the supply of light, thereby reducing the electric potential. As soon as my hand was out of the
way from the ambient light source, the voltage quickly recovered.
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5 Pulse Measurement

Voltage(V)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

T
im

e
(s

e
c
)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Pulse Measurement by Light Detection

Figure 8: The Pulse, as measured by the intensity of light passing through the finger.
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6 Photo

Figure 9: The picture of the pulse-measuring circuit.
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ISim Lab 6 : Glucose Meter

Yoonyoung Cho

October 18 2015

1 Voltage Source

Figure 1: A simplified diagram of the circuit; the Op-Amp is not represented in the diagram, as it is assumed
not to draw any current.

A quick analysis of the circuit shows that:

Vmid − Vin

R1
=

Vout − Vmid

R2

2.1V − 5V

R1
=

0 − 2.1V

R2

R1

R2
=

2.9V

2.1V

since 2.9V
2.1V = 1.381 and 158Ω

115Ω = 1.374, which shows a mere 0.5% deviation, I used the two resistors; the
corresponding circuit provided the Voltage of 2.104V as the value for Vmid, consistent with the prediction.

2 Resistance Measure

Figure 2: A simplified diagram of the circuit; the Op-Amps are, again, not represented, for simplicity.
However, the values of Vin and Vout are affixed at 2.1V and 2.5V , respectively, due to the Op-Amps.
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Since the current through the two resisters ought to be equivalent,

Vmid − Vin

R
=

Vout − Vmid

R2

R = R2 ∗
Vmid − Vin

Vout − Vmid

which, in this case, yields 100KΩ ∗ (2.5V−2.1V )
(3.26V−2.5V ) = 52.6KΩ. As the prescribed value for the resistor was

50KΩ, the % Discrepancy of the two is a mere 5.2%. The following table summarizes the accuracy – and
the overall characteristic – of this circuit:

Table 1: Actual(Ra) vs. Theoretical(Rt) Resistance

Vout Ra Rt

3.306V 49KΩ 49.63KΩ
4.526V 20KΩ 19.74KΩ
4.974V 2KΩ 16KΩ
4.974V 0Ω 16KΩ
2.572V 499KΩ 555KΩ

It is readily apparent that the values are most coherent in the range that is within a modest leeway from
100KΩ; the values taken at extremity are less credible and demonstrate greater deviation from the actual
values of the resistors.

For instance, a quick calculation of Rlow = (2.5V−2.1V )∗100KΩ
5.0V−2.5V proves that the resistor value lower than

16KΩ, the point at which Vout gets stuck in the rails of the Op-Amp, cannot be expected to be consistent
with the theoretical values, which is indeed the case for the measurements taken at 2KΩ and 0Ω(wired
connection without a resistor).

As this data is closely coherent to such predictions – displaying ”bound” behavior at extremity and more
consistency around the 100KΩ region – I can conclude that the circuit is functional.

3 Integrator

Figure 3: A simplified diagram of the circuit; Vmid is held to be at 2.5V due to the Op-Amp.

The relationship in this circuit is quite straightforward:

Vmid − Vin

R
= C

d(Vout − Vmid)

dt

2



taking Vout as reference, the equation can be further simplified:

−Vin

R
= C

dVout

dt∫ t

0

−Vin

R
dt =

∫ t

0

CdVout

Vout − Vout0 =

∫ t

0
−Vindt

RC

Now, since Vin, is a square wave, which can be assumed constant over a brief time span,

Vout − Vout0 =
−Vin ∗ t
RC

With such relationship in mind, let us consider the following plot, generated from the experiment:
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Voltage Dynamics of the Integrator Circuit

V
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V
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X: 0.01738

Y: -0.4378

X: -0.03313

Y: 0.868

Figure 4: The Voltage Dynamics of the Integrator Circuit. The Slope is present in the graph because the
snapshot was taken before the balance settled down; this choice was inevitable, as the integration was cut
off prematurely by the -2.5V limit rails when the equilibrium state was reached.

Here, ∆t is 0.01738 − (−0.03313) = .05051 seconds, and ∆Vout = −0.4378 − 0.868 = −1.3058. Theoreti-
cally, since ∆t = 0.05051 seconds, ∆Vout = −2.5∗.05051/(100KΩ∗1 µF); so the theoretical ∆Vout = −1.263V ,
which is only 3.4% away from the experimental value. This coherence demonstrates that the circuit is in
fact an integrating circuit.

4 Glucose Sensor

The superimposed plot of the Voltage(which is proportional to the current) over time is shown below:
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Figure 5: Voltage output time series. In superimposing the respective plots, the data was processed so that
the plateaued region would be eliminated; thereby, each interaction would start at the same moment, giving
a better idea of calibration.

as the trends reveal, the concentrations diverge at a slope that is approximately proportional to the
concentration of glucose; this trait allows for the calibration curve to be generated, as the data themselves
get spaced out over time. Accordingly, the calibration data taken at t = 25 seconds in the graph is shown
below:
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Figure 6: The calibration curve of the Voltage value per Glucose concentration, as taken 25 seconds after
the beginning of the interaction.

As seen, the concentration of glucose and the voltage level are linearly dependent. The following figure
also depicts the integrated value of the voltage:
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Figure 7: The integrated value of the voltage.

As seen, the fluctuations are much more exposed, thereby rendering it a poor candidate in terms of
gauging the calibration.
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ISim Lab 7: Blood Pressure

Yoonyoung Cho

October 2015

1 Introduction

Figure 1: Diagram of the whole circuit, drawn with Upverter.

Since operational Amplifiers draw no current, each subcomponent may be treated as a separate system;
naturally, in the following sections, I will process the voltage in each phase separately, rather than combining
them into a singular expression that relates Vout directly to Vin. In this scenario, the circuit is composed of
four phases: high-pass filter, amplifier, low-pass filter, and unity-gain follower.1

1the low-pass filter only depends on the voltage after the amplification, and is more or less a separate system.
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2 Circuit Analysis

2.1 High-pass Filter

Figure 2: First Phase : High-pass Filter from Vin to V1

V1 − Vin

1/jωC1
=

0 − V1

R1

V1(jωC1 + 1/R1) = Vin ∗ jωC1

V1 =
Vin ∗ jωC1

jωC1 + 1/R1

2.2 Amplifier

Figure 3: Second Phase : Amplifier from V1 to V2

V1 − 0

R3
=

V2 − V1

R2

V1(1/R3 + 1/R2) =
V2

R2

V2 = R2V1
R2 + R3

R2R3

V2 = V1
R2 + R3

R3

2



2.3 Low-pass Filter

Figure 4: Third Phase : Low-pass Filter from V2 to V3

V3 − V2

R4
=

0 − V3

1/jωC2

V3(1/R4 + jωC2) =
V2

R4

V3 =
V2

1 + R4jωC2

2.4 Unity-Gain Follower

Figure 5: Fourth Phase : Unity-Gain Follower from V3 to Vout

Given that the voltage is not stuck at the extreme values(rails), it is the property of the Op-Amp that
Vout == V3. This Unity-Gain Follower was implemented in order to facilitate the measurement of voltage,
by the Analog Discovery.
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3 Results

3.1 Verification
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Figure 6: Bode plot of the circuit. The Analog Discovery was unable to create the bode plot below 1 Hz –
hence the cutoff in the left part of the plot. Cutoff Frequency for the High-pass filter was .693 Hz, and the
cutoff frequency for the Low-pass filter was 1.59 Hz.

Experimental data and Theoretical data showed a clear coherence except at higher frequencies, where the
measurement is known to be unstable.
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3.2 Application
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Figure 7: The time series of the Blood Pressure. As shown, the processed signal shows a greater indication
of recurring blood pressure than the raw signal.
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Figure 8: The time series was analyzed to find the period of the blood pressure: as shown in the fit line,
each peak occurred every 0.71 seconds.
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ISim Lab 8: BCG

Yoonyoung Cho

November 9 2015

1 BCG Trace
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Figure 1: Trace of Ballistocardiogram; a regular pattern of crests preceded by troughs is observed.
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2 Period Analysis
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Figure 2: Heartbeat Period; as seen, the peak occurred every .57 seconds.

3 Circuit Diagram

Figure 3: Circuit Diagram.
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ISim Lab9

Yoonyoung Cho

November 16 2015

1 Schematic

The full schematic of the receiver circuit is shown below:

Figure 1: Full schematic of the receiver circuit.

In this circuit, Vin corresponds to the raw signal input from the receiver; Vout corresponds to the signal
after going through a second order band-pass filter composed of two Sallen-Key filters. In order to keep
the circuit simple, I did not utilize the amplification capability of the Sallen-Key filters; instead, signal
amplification was isolated into a separate process.

2 Analysis

Relying on the fact that Op-Amps draw no current, it makes most sense to break down the parts into
subsystems; furthermore, it would be convenient to treat a general case of the Sallen-Key topology, with
impedence, that could be applied to both high-pass and low-pass filters. As the two amplifiers in the later
stage of the process are identical, the analysis of the overall circuit would just involve two circuit structures.

1



2.1 Sallen-Key Topology

Figure 2: Generic Sallen-Key Topology.

Unlike previous labs, in this circuit the Gain-Bandwidth tradeoff has a significant impact upon; therefore,
making a simple assumption that the positive and negative input voltage to the operational amplifiers are
inappropriate. Thus, the Op-Amp would be bound to a more complex expression:

dVout

dt
= ω1(V2 − Vout)

in which ω1 represents the characteristic frequency of the Op-amp. As well as the usual relationships:

I =
V1 − Vin

Z1

= i1 + i2

i1 =
Vout − V1

Z3

i2 =
V2 − V1

Z2

=
0 − V2

Z4

The above equations conclude the overarching relationships in the circuit. Now, the analysis:

V1

Z2
=

V2

Z2
+

V2

Z4

V1 = V2
Z2 + Z4

Z4

V2 = V1
Z4

Z2 + Z4
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V1 − Vin

Z1
=

Vout − V1

Z3
− V1

Z2 + Z4

V1(
1

Z1
+

1

Z3
+

1

Z2 + Z4
) =

Vin

Z1
+

Vout

Z3

Z3V1 + Z1V1 +
Z1Z3V1

Z2 + Z4
= Z3Vin + Z1Vout

V1(Z1 + Z3 +
Z1Z3

Z2 + Z4
) = Z3Vin + Z1Vout

V1 =
Z3Vin + Z1Vout

Z1 + Z3 + Z1Z3

Z2+Z4

dVout

dt
= ω1(V2 − Vout)

V2 = V1
Z4

Z2 + Z4

dVout

dt
= ω1(V1

Z4

Z2 + Z4
− Vout)

V1 =
Z3Vin + Z1Vout

Z1 + Z3 + Z1Z3

Z2+Z4

dVout

dt
= ω1(

Z3Vin + Z1Vout

Z1 + Z3 + Z1Z3

Z2+Z4

Z4

Z2 + Z4
− Vout)

dVout

dt
= k1Vin + k2Vout

Here k1 and k2 are simply placeholders for the complex expressions:

k1 = ω1Z3(
Z4

Z2 + Z4

1

Z1 + Z3 + Z1Z3

Z2+Z4

)

k2 = ω1(
Z4

Z2 + Z4
∗ 1

Z1 + Z3 + Z1Z3

Z2+Z4

Z1 − 1)

Vin = V0e
jωt

Vout = GV0e
jωt

jωGV0e
jωt = k1V0e

jωt + k2GV0e
jωt

jωG = k1 + k2G

G(jω − k2) = k1

G =
k1

jω − k2

G represents the encoded Gain of Vout with respect to Vin (as well as the phase shift)
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Figure 3: Bode plot, for the Band-pass filter only.

I couldn’t get the plot to output reasonable data with the filters and amplifiers in conjunction; the parts
were working fine in isolation, so I chose to present the results separately. As shown, the output is consistent
with the theoretical output in trends, though with less intensity. As expected, the roll-off is much milder
in the higher frequencies, in which the gain-bandwidth tradeoff reduces the overall magnitude, than in the
lower frequencies.
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2.2 Inverting Amplifier

Figure 4: Inverting Amplifier Schematic.

Cutting to the chase, the relationships are as follows:

V1 − Vin

R1
=

Vout − V1

R2

dVout

dt
= −ω1V1

Henceforth, the analysis:

V1(
1

R1
+

1

R2
) =

Vout

R2
+

Vin

R1

(R1 + R2)V1 = R1Vout + R2Vin

V1 =
R1Vout + R2Vin

R1 + R2

dVout

dt
= −ω1

R1Vout + R2Vin

R1 + R2

dVout

dt
=

−ω1R1

R1 + R2
Vout +

−ω1R2

R1 + R2
Vin
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which is now of the form we had seen before:

dVout

dt
= k1Vin + k2Vout

k1 =
−ω1R2

R1 + R2

k2 =
−ω1R1

R1 + R2

thus,

G =
k1

jω − k2
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Figure 5: Bode plot, for the Amplifier only.

The theory as to the capped amplification of the amplifier was that the voltage emitted by the Analog
Discovery was simply too big to be amplified 900 times; the discrepancy for the phase remains unclear, but
is fortunately irrelevant to the signal reception in this circuit.

3 Comparison

The measured sonar responses are as follows:
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(d) 120 cm
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Figure 6: Measured sonar responses.

In order to emphasize the comparison, the data were all combined upon one plot with spaces in between:
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Figure 7: Combined Sonar Response.

The trend becomes more apparent in this display: the magnitude of the signal is significantly greater
at closer range, and it takes less time to come back. After digitizing the signals(as it was very difficult to
implement an automated process), I obtained the following result:

Table 1: Calculation of distance from the time interval of signals; Val was obtained by digitizing the data.

Dist(cm) Val time(sec) time/2 dist(m) dist(cm)
30 0.03358 0.002015 0.001007 0.342804 34.2804
60 0.065815 0.003949 0.001974 0.67189 67.18905
90 0.094694 0.005682 0.002841 0.966702 96.6702
120 0.120215 0.007213 0.003606 1.227237 122.7237
150 0.150437 0.009026 0.004513 1.535765 153.5765
180 0.181329 0.01088 0.00544 1.851136 185.1136
210 0.208865 0.012532 0.006266 2.132239 213.2239
240 0.238415 0.014305 0.007152 2.433911 243.3911
270 0.267293 0.016038 0.008019 2.728718 272.8718
300 0.274681 0.016481 0.00824 2.804134 280.4134

From this, I was able to validate my data, which concludes this lab.
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