
Machine Learning & Game A.I.

With the recent victory of AlphaGo, A.I. has demonstrated stellar

performance in tasks designed to be challenging for even humans. This

project, in reproducing Deepmind’s architecture from scratch, implements a
wide breadth of relevant machine-learning concepts without relying on

external frameworks.

IV. How Can I Do It?

V. How Well Does It Perform?
While the power of my A.I. was limited by time, storage, and implementation con-
straints, it produced some noteworthy results.

Fig 8. training score, averaged over 100 games, with the scoring scheme of the original game.
A clear trend of improvement is visible, though possibly due to epsilon-annealing; a completely random agent, in 
comparison, achieves an average score of approximately 400.

Fig 9. Q-Learning loss, averaged over approximately 262 queries. Despite the fact that the loss was recalibrated 
with alpha-annealing, a clear trend of decreasing loss is visible, plateauing out in the end.

I. So, What did You Do?

Have you ever played 2048?

If you haven’t, download the app now and play it while listening! It’s al-
most as fun as this presentation. Not quite, but close.

Anyways, I implemented 2048 A.I. with C++, without external framework 
other than Armadillo, which is a CPU-based library for Linear Algebra.

Fig1. 2048 is a single-player sliding block puzzle game by 
19-year-old Italian web develovper Gabriele Cirulli. [Wikipe-
dia]

III. How Does It Work?

Q-Learning is a class of temporal difference learning that perform an iterative 
update based on interaction with the environment. The Q function correlates 
state-action pairs with its value, or utility. 

By linearly interpolating between the previous value and the anticipated fu-
ture reward, the true reward gets propagated throughout the system.

Fig 3. Q-Learning Algorithm finds the value of an action a in state s. 
Here, for instance, blue corresponds to a desirable action -- red, not 
so much.

Because this is the first step towards your 
robotic butler... maybe.

II. Why Should I Care?

Games provide a simulated setting for the development of Artificial 
Intelligence, in which the relevant information for training are readily 
available in a repeatable and scalable manner; moreover, they often 
present tasks that are difficult for even humans to accomplish.
All of these traits makes games a very appropriate experimental 
ground for machine-learning, prior to more complex applications.

Fig 2. JARVIS, a robotic butler in the Iron-Man Franchise.

Jamie Cho

Neural Network

Neural Networks, in machine-learning, are biologically inspired compu-
tational counterparts to synaptic connections.
In a FeedForward Neural Network, each neuron interacts with a set of 
input and output neurons, as follows:

Adaptive Learning

Convolutional Neural Network

Convolutional Neural Network, ConvNet in short, is a specialized form of a 
neural network devised by Yann Lecun to specifically process highly structured im-
age-type data. In fact, it is inspired by the visual cortex.

The most powerful trait of a ConvNet is feature extraction; ConvNet learns the 
filters with which to extract higher-level features from the data. This enables a full-
fledged automata without preprocessed input.

In 2048, there is a strong two-dimensional correlation in space, so ConvNet is a 
natural choice; however, due to heavy computational costs, I couldn’t run the simu-
lation enough to find the appropriate hyperparameters.

Fig 6. Illustration of a Convolutional Layer.

Experience Replay
Experience Replay roots itself in reminiscence -- namely, using the 
experience multiple times in the training process. Prior to its devel-
opment, each experience in Q-Learning was used exactly once and 
discarded.

By randomly selecting a sample among a pool of memorized experi-
ences, the Q-function learns to generalize the system due to the re-
moval of the temporal correlation between neighboring updates, thus 
leading to better convergence.

Neural networks as value-function approximators are known to be 
very unstable: prone to diverge; the dilemma with the learning rates 
is neither small nor large are good for fast and stable convergence. 
Adaptive Learning optimizations provide a means to achieve 
this by adjusting the learning rates based on the response of the sys-
tem to recent updates.

Deep Q-Learning

Deep Q-Learning is a recent advancement that provides a general 
framework upon to develop a universally adaptable agent.

In a traditional Q-Learning setting, the value function was stored via a ta-
ble that mapped transitions to its utility. Naturally, the algorithm suffered 
dearly from the curse of dimensionality.
What’s more, the agent cannot infer from previous examples: it is com-
pletely vulnerable in unforeseen situations, regardless of the resemblance 
with earlier experiences.
Neural Network, in this way, serve as an excellent approximator of the 
value function: it is able to identify trends in the correlation between the 
input and the output.

Fig 4. Google Deepmind Architecture for DQN.

Quest To Convergence

Neural Networks learn through a process called Back Propagation. 
This is essentially identifying how much of the previous input was respon-
sible for the error, and propagating this error backwards. The canonical 
equation is illustrated below.

Fig 5. A simple illustration of Neural Network Architecture. Fig 7. Issues of uncalibrated learning rates, in either direction.

Fig 10. Highest Tiles on the board out of 100 testing games. One of the games were actually able to reach 1024, 
which is halfway towards beating the game. Generally, the game ended with 512 or 256 as the end-game values.

VI. What Next?
I believe that the A.I. definitely has potential to consistently beat the game.

To this end, I plan on implementing backpropagation with minibatch gra-
dients. I’ve recently realized that minibatch and ER work very well together, 
both in concept and implementation.

Furthermore, I’m willing to try more adaptive learning rate algorithms. So far, 
I’ve only looked into AdaDelta and RMSProp. On that note, Nesterov mo-
mentum allegedly converges faster and in a more reliable way, which I hav-
en’t tried yet.

I have already implemented ConvNet with OpenCV, but I wasn’t quite able 
to apply that to this project as it was slow, unreliable and inconvenient. I’m 
currently implementing a fully GPU-based ConvNet, in CUDA, with its own 
Linear Algebra Kernels to speed up the learning process.


